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Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions

Risk Aggregation and Diversification

o A key issue in capital adequacy and solvency is to aggregate
risks (by summing capital requirements?) and potentially
account for diversification (to reduce the total capital?)

Carole Bernard Assessing Model Risk in High Dimensions



Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions

Risk Aggregation and Diversification

o A key issue in capital adequacy and solvency is to aggregate
risks (by summing capital requirements?) and potentially
account for diversification (to reduce the total capital?)

e Using the standard deviation to measure the risk of
aggregating X3 and X, with standard deviation o1 and o>,

std(X1 + Xz) = \/0% + 03 + 2po102

If p <1, there are “diversification benefits”: aggregating
reduces the risk (subadditivity property).
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Risk Aggregation and Diversification

o A key issue in capital adequacy and solvency is to aggregate
risks (by summing capital requirements?) and potentially
account for diversification (to reduce the total capital?)

e Using the standard deviation to measure the risk of
aggregating X3 and X, with standard deviation o1 and o>,

std(X1 + Xz) = \/0% + 03 + 2po102

If p <1, there are “diversification benefits”: aggregating
reduces the risk (subadditivity property).

e This is not the case for instance for Value-at-Risk.
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Risk Aggregation and Diversification

e Basel Il, Solvency Il, Swiss Solvency Test, US Risk Based
Capital, Canadian Minimum Continuing Capital and Surplus
Requirements (MCCSR): all recognize partially the benefits of
diversification and aggregating risks may decrease the overall
capital.
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Risk Aggregation and Diversification

e Basel Il, Solvency Il, Swiss Solvency Test, US Risk Based
Capital, Canadian Minimum Continuing Capital and Surplus
Requirements (MCCSR): all recognize partially the benefits of
diversification and aggregating risks may decrease the overall
capital.

e But they also recognize the difficulty to find an adequate
model to aggregate risks.

» Var-covar approach based on a correlation matrix: correlation
is a poor measure of dependence, issue with micro-correlation,
correlation 0 does not mean independence, problem of tail
dependence, correlation is a measure of linear dependence.

» Copula approach, vine models... : very flexible but prone to
model risk

» Scenario based approach, including identifying common risk
factors and incorporate what you know in the model.
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Objectives and Findings

e Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d individual dependent risks.

» Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of the portfolio?
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Objectives and Findings

e Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d individual dependent risks.

» Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of the portfolio?

e Analytical expressions for these maximum and minimum

e A non-parametric method based on the data at hand.
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Objectives and Findings

Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d individual dependent risks.
» Given all information available in the market, what can we say

about the maximum and minimum possible values of a given
risk measure of the portfolio?

Analytical expressions for these maximum and minimum

e A non-parametric method based on the data at hand.

Implications:
» Current regulation is subject to very high model risk, even if
one knows the multivariate distribution almost completely.
» Able to quantify model risk for a chosen risk measure. We can
identify for which risk measures it is meaningful to develop
accurate multivariate models.

Carole Bernard Assessing Model Risk in High Dimensions



Introduction Model Risk First Approach Second Approach Value-at-Risk

Model Risk

@ Goal: Assess the risk of a portfolio sum S = Zj-jzl X;.

Conclusions
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Model Risk
@ Goal: Assess the risk of a portfolio sum S = Z:-jzl X;.

@ Choose a risk measure p(-), fit a multivariate distribution for
(X1, X2, ..., Xg) and compute p(S)
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Model Risk

@ Goal: Assess the risk of a portfolio sum S = 2;1:1 X;.

@ Choose a risk measure p(-), fit a multivariate distribution for
(X1, X2, ..., Xg) and compute p(S)

© How about model risk? How wrong can we be?
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Choice of the risk measure

Variance of X
Value-at-Risk of X at level p € (0,1)

VaR, (X) = F'(p) = inf {x e R| Fx(x) = p} (1)

Tail Value-at-Risk or Expected Shortfall of X

TVaR,( / VaR,( p < (0,1)

and p — TVaR, is continuous.
Left Tail Value-at-Risk of X

1 P
LTVaR,(X) = / VaR,(X)du

0
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Assessing Model Risk on Dependence with d = 2 Risks

definition: Convex order

X is smaller in convex order, X <. Y, if for all convex functions f

E[F(X)] < E[f(Y)]

Assume first that we trust the marginals X; ~ F; but that we have
no trust about the dependence structure between the X; (copula).
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Assessing Model Risk on Dependence with d = 2 Risks

definition: Convex order

X is smaller in convex order, X <. Y, if for all convex functions f

E[F(X)] < E[f(Y)]

Assume first that we trust the marginals X; ~ F; but that we have
no trust about the dependence structure between the X; (copula).

In two dimensions, assessing model risk on p(S) is linked to the
Fréchet-Hoeffding bounds or “extreme dependence”.

FrHU) 4+ F Y1 = U) <o Xo 4+ Xo <o F{H(U) + F5 HU)
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Assessing Model Risk on Dependence with d = 2 Risks

definition: Convex order

X is smaller in convex order, X <. Y, if for all convex functions f

E[F(X)] < E[f(Y)]

Assume first that we trust the marginals X; ~ F; but that we have
no trust about the dependence structure between the X; (copula).

In two dimensions, assessing model risk on p(S) is linked to the
Fréchet-Hoeffding bounds or “extreme dependence”.

FrHU) 4+ F Y1 = U) <o Xo 4+ Xo <o F{H(U) + F5 HU)

» For risk measures preserving convex order (p(S) = var(S),
p(S) = TVaR(S)), for U ~U(0,1)
p (FLHU) + R (1= 1) < p(8) < p (FTH(U) + Fy 1))
This does not apply to Value-at-Risk.
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Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions
Assessing Model Risk on Dependence with d > 3 Risks

» The Fréchet upper bound corresponds to the comonotonic
scenario:

Xi+ Xo 4 oo+ Xg <ox FHU) + FyHU) + .o+ F7YU)
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Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions
Assessing Model Risk on Dependence with d > 3 Risks

» The Fréchet upper bound corresponds to the comonotonic
scenario:

X1+ Xo + oo+ Xg <ex Fy HU) + F5 H(U) + .o+ FFHU)

» In d > 3 dims, the Fréchet lower bound does not exist: It
depends on Fy, Fy,..., F4. See Wang and Wang (2011, 2014).
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Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions
Assessing Model Risk on Dependence with d > 3 Risks

» The Fréchet upper bound corresponds to the comonotonic
scenario:

Xi 4 Xo + oo 4 Xg <o F7HU) + FyYU) + . 4+ F7H(U)

» In d > 3 dims, the Fréchet lower bound does not exist: It
depends on Fy, Fy,..., F4. See Wang and Wang (2011, 2014).
» In d dimensions
e Puccetti and Riischendorf (2012, JCAM): algorithm (RA) to
approximate bounds on functionals.
e Embrechts, Puccetti, Riischendorf (2013, JBF): application of
the RA to find bounds on VaR
e Bernard, Jiang, Wang (2014, IME): explicit form of the lower
bound for convex risk measures of an homogeneous sum.
» lIssues
e bounds are generally very wide
e ignore all information on dependence.
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Incorporating Partial Information on Dependence

o With d = 2:

e subset of bivariate distribution with given measure of
association Nelsen et al. (2001 Commun. Stat Theory
Methods, 2004, JMVA)

e bounds for bivariate distribution functions when there are
constraints on the values of its quartiles (Nelsen et al. (2004)).

e 2-dim copula known on a subset of [0,1]?> = find “improved
Fréchet bounds”, Tankov (2011, JAP), Bernard et al. (2012,
JAP) and Sadooghi-Alvandi et al. (2013, Commun. Stat.
Theory Methods).

e With d > 3: Bounds on the VaR of the sum

- with known bivariate distributions: Embrechts, Puccetti and
Riischendorf (2013)

- with the variance of the sum (WP with Riischendorf,Vanduffel)

- with higher moments (WP with Denuit, Vanduffel)
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Our assumptions
Let (X1, X2, ..., Xq) be some random vector of interest. Let
F C RY (“trusted” or “fixed” area) and U =R9\F (“untrusted”
area). We assume that we know

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(i) the distribution of (X1, X2, ..., Xg) | {(X1, X2, ..., Xg) € F}.
(i) P((X1,X2,...,Xq) € F)
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Our assumptions

Let (X1, X2, ..., X4) be some random vector of interest. Let
F C RY (“trusted” or “fixed” area) and U =R9\F (“untrusted”
area). We assume that we know

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(i) the distribution of (X1, X2, ..., Xg) | {(X1, X2, ..., Xg) € F}.
(iii) P((X1, X2, ..., Xq) € F)

» The joint distribution of (X1, X2, ..., Xy) is thus completely
specified if F =R? and U = 0.
» When only marginals are known: & = R? and F = 0.

» Our Goal: Find bounds on p(S) := p(X1 + ... + X4) when
(X1, ..., Xy) satisfy (i), (ii) and (iii).
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First Approach
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Second Approach Value-at-Risk
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lllustration with marginals N(0,1)

2 2

Fir={{as < Xk < q1_5} F = U {X > qp}U]:l
k=1
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lllustration with marginals N(0,1)

2

F1 =contour of MVN at 3 F = U {Xk > qp} U]:l
k=1
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Model Risk

Assume (X, Xa, ..., Xy) satisfies (i), (ii) and (iii) and use a risk
measure p(-). Define

s fo (S (0]

where the supremum and the infimum are taken over all other
(joint distributions of) random vectors (Y1, Y2, ..., Yq) that agree
with (i), (ii) and (iii).
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Model Risk

Assume (X, Xa, ..., Xy) satisfies (i), (ii) and (iii) and use a risk
measure p(-). Define

s fo (S (0]

where the supremum and the infimum are taken over all other
(joint distributions of) random vectors (Y1, Y2, ..., Yq) that agree
with (i), (i) and (iii).

“Model risk of underestimation” of p(> X;) in some chosen

benchmark model: N .
pr — PO i1 Xi)

+
PF
“Model risk of overestimation” of p(>_ X;):

o
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Technical Contributions

© The first approach is practical: an algorithm to approximate

the sharp bounds p and pJ}C performed directly using the
data at hand (without fitting a model): model risk can be
assessed in a fully non-parametric way: Use of the
rearrangement algorithm of Puccetti and Riischendorf (2012)
and Embrechts et al. (2013).

© The second approach provides theoretical bounds, which can
be directly computed within a model (Monte Carlo) but may
not be sharp.
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First Approach

Approximation of Bounds

(for variance and TVaR)
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Non-parametric Approach

N observations of the d-dimensional vector (xi1, Xi2, ..., Xid)
for i=1,..., N. The corresponding N x d matrix:

M = (x;)ij
e Each observation (xj1, X2, ..., Xig) occurs with probability %

naturally (possibly involving repetitions).

e M contains enough data for an accurate description of the
marginal distributions of Xy (k =1,2,...,d)

e Define Sy by Sy(i) = ZZZI xjk for (i=1,2,...,N). Sy can
be seen as a random variable that takes the value Sy(7) in
“state” jfori=1,2,...,N.

Goal: Find (sharp) bounds on the risk measure applied to Sy.

Carole Bernard Assessing Model Risk in High Dimensions 18
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Example of M:

N = 8 observations, d = 3 dimensions
and 3 observations trusted (¢/f = 3, pr = 3/8)

SN =

=W OO -~ W
N = OB DN WK
W NN ==
O B~ 00 W UL W o
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The matrix M is split into two parts: Fy : trusted
observations, Uy : “untrusted” part.

Rearranging the values xj (i = 1,2, ..., N) within the k—th
column does not affect the marginal distribution X, but only
changes the observed dependence.

£¢ : number of elements in Fp, £, : number of elements in Uy
N=1Vr+1,.

M has ¢ grey rows and £, white rows.

S,(, and Sy consist of sums in Fjy and Uy .

Carole Bernard Assessing Model Risk in High Dimensions

20



Introduction

Model Risk

First Approach

Second Approach

Value-at-Risk

Example: N =8, d =3 with 3 observations trusted (¢ = 3)

Carole Bernard

O = =W O D W

== OO =W

O =N W N R

SISO U SRS

= NN W DN

W N = DN~ DN ==

Sy =

© = = 00 W Ut W

Assessing Model Risk in High Dimensions
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Bounds on Variance (or TVaR) - Maximum variance

Maximum in convex order:

upper Fréchet bound, comonotonic scenario

e To maximize the variance of Sp: comonotonic scenario on
Uy, and the corresponding values of the sums are exactly the
values §; (i =1,2,...,4,) in S.

e The upper bound on variance is then computed as

1 lf Ly
— Si—5) + 5i—5
HONEEDES SR @)

d

z_ 1\yWN .
where the average sum 5= 5 > ;71 > 7 X
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Example: Maximum Variance

With the matrix M of observations

3 4 1

2 4 2 10

02 1

4 3 3 8 7
M= . Sh=|81|, St=1| 4

3 2 2 3 3

1 1 2 1

1 1 1

0 0 1|

The average sum is 5 = 5.5. The maximum variance is equal to

1 3 5
5 (Z(s,- 32+ (5 - §)2> ~ 8.75

i=1 i=1
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Bounds on Variance (or TVaR) - Minimum variance

Minimum in convex order

The rearrangement algorithm (RA) of Puccetti & Rischendorf,
2012 aims to obtain sums that are “smallest possible” (for convex
order).

Idea of the RA
» Columns of M are rearranged such that they become
anti-monotonic with the sum of all other columns “until
convergence is reached”.

Vk € {1,2,...,n}, Xy antimonotonic with ZXJ
7k
» Note that after each step,
var (X2 + 21 ) < var (X + 324 X; ) where X7 is
antimonotonic with >, X;

Carole Bernard Assessing Model Risk in High Dimensions 24
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Example: Minimum Variance

OHF Wk ONW
O HNWNA K
HFHEFNNWRNKRF
19}
2%
Il
w o
o
Il
) —
A
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Example: Minimum Variance

3 4 1

2 4 2 10

o 2 1

4 3 3 f 8 v

— _ w o

w33 3] sh=|s ] se—|

1 1 2 1

1 1 1

o o0 1

For the minimum variance, construct convex smallest distribution
for Sy (ideally constant, “joint mixability”) = RA on Uy

3 4 1
2 4 2 5
ol s :

M=|,5 3 5|, sk=|8], sSkt= 5
12 2 2 ‘5’
3 1 1
4 (0] 1

The minimum variance is
L(Zha(s - 3P+ 0, (5m - 32) ~ 25

Carole Bernard Assessing Model Risk in High Dimensions
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Second Approach

Model Risk Analytical Bounds

(for variance and TVaR)
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Some Notation

Define pr := P(I=1) and p, := P(I = 0) where

[:=1(x x,..Xs)eF (3)

Let U ~ U(0,1) independent of the event
“(X1, X2, ..., Xq) € F" (so U is independent of I).

Define (241, 22, ..., Z4) by

Zi=Fy}

X,-|(X1,X2,...,Xd)el/l(U)’ I = 1,2,...,d (4‘)

All Z; (i=1,2,...,d) are increasing in U and thus
(Z1, 2o, ..., Z4) is comonotonic with known distribution.
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Bounds on Variance

Theorem (Bounds on the variance of Z;j:l Xi)

Let (X1, Xa, ..., Xy) that satisfies properties (i), (ii) and (iii) and let
(21,22, ...,Z4) and 1 as defined before.

d d d
var <]IZ Xi+(1-0)> E(Z,-)) < var <Z X,->
i=1 i=1 ., i=1 .
< var <]IZX,' +(1- H)ZZ)

i=1 i=1
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Example

» Assume d = 20.
» (i) (X1,..., X20) is a random vector with N(0,1) marginals.

» (ii) (X1, ..., X20) follows a multivariate standard normal
distribution with correlation parameter (pairwise correlation) p
on

Fo= [qﬁv ql—ﬁ]d - Rd

(for some 3 < 50%) where g, is the quantile of N(0,1) at
level 7.
» (3 = 0%: no uncertainty

» (3 =50% full uncertainty

Carole Bernard Assessing Model Risk in High Dimensions 29



Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions

Numerical Results

U=10 U=RI

F=las, 15l | B=0% | B=0.05% B=05% | B=50%
p=0 4.47 (4.4 ,5.65) | (3.89,10.6) | (0, 20)
p=0.1 762 | (7.41,826) | (6.23,11.7) | (0, 20)

e First column: standard deviation of 2?21 Xi under the
assumption of multivariate normality (no dependence
uncertainty, i.e., U = ().

o Lower and upper bounds of the standard deviation of 322, X;
are reported as pairs (p},p}) for various confidence levels S.

e 3,000,000 simulations: all digits reported in the table are
significant.
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Observations

» Impact of model risk on the standard deviation can be
substantial even when the joint distribution (Xi, ..., X4) is
almost perfectly known (3 close to 0, p, close to 0).
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Observations

» Impact of model risk on the standard deviation can be

substantial even when the joint distribution (Xi, ..., X4) is
almost perfectly known (3 close to 0, p, close to 0).

B =0.05% and p = 0. In this case, p, = 1 — 0.999%° ~ 0.02.
Here, using a multivariate normal assumption might
underestimate the standard deviation by
(5.65-4.47)/4.47=26.4% and overestimate it by

(4.47-4.4) /4.4=1.6%.

Thus the multivariate normality does not seem to be a
prudent assumption: more likely to underestimate risk than to
overestimate it.

Carole Bernard Assessing Model Risk in High Dimensions
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Observations

Impact of model risk on the standard deviation can be
substantial even when the joint distribution (Xi, ..., X4) is
almost perfectly known (3 close to 0, p, close to 0).

B =0.05% and p = 0. In this case, p, = 1 — 0.999%° ~ 0.02.
Here, using a multivariate normal assumption might
underestimate the standard deviation by
(5.65-4.47)/4.47=26.4% and overestimate it by

(4.47-4.4) /4.4=1.6%.

Thus the multivariate normality does not seem to be a
prudent assumption: more likely to underestimate risk than to
overestimate it.

Adding partial information on dependence (ie when 8 < 50%)
reduces the unconstrained bounds (3 = 50%).

when 3 =0.5% and p =0, p, = 1 — 0.99%° ~ 0.18 and the
unconstrained upper bound for the standard deviation shrinks
by approximately 50% (it decreases from 20 to 10.6).
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Bounds on TVaR or any risk measure satisfying convex order

Theorem (Bounds on the TVaR of "%, X;)

Assume (X1, Xo, ..., Xq) satisfies (i), (ii) and (iii), and let
(Z1, 2>, ..., Z4) and 1 as defined before.

d d d
TVaR, (HZX; +(1-0) Z E(Zi)> < TVaR, (Z Xi)
i=1

d d

< TVaR, (]IZX,--l-(l—}I)ZZ,-

i=1 =S

Carole Bernard Assessing Model Risk in High Dimensions
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Bounds on TVaR or any risk measure satisfying convex order

Theorem (Bounds on the TVaR of "%, X;)

Assume (X1, Xo, ..., Xq) satisfies (i), (ii) and (iii), and let
(Z1, 2>, ..., Zq) and 1 as defined before.

d d d
TVaR, (HZX,- +(1-0)) E(Z,-)> < TVaR, (Z X,-)
i=1 1 i=1

=

d d
< TVaR, (HZX,' +(1 H)ZZ-)

i=1 =S

v

» Same example with the standard multivariate model as
benchmark.

» Conclusions are similar to the variance.
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First & Second Approach

Bounds on Value-at-Risk

Carole Bernard Assessing Model Risk in High Dimensions 33
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Bounds on Value-at-Risk

Previous approach works for all risk measures that satisfy convex
order... But not for Value-at-Risk(S)

» to maximize VaR,, the idea is to change the comonotonic
dependence of Z; such that the sum is constant beyond the
(comonotonic) VaR level

» to minimize VaR,, the idea is to change the comonotonic
dependence of Z; such that the sum is constant in the left
tail, below the (comonotonic) VaR level (or lowest variance)

Carole Bernard Assessing Model Risk in High Dimensions 34
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Unconstrained Bounds with X; ~ F;

A = LTVaR,(5°) < VaRg [X1 4+ Xz + ... + Xs] < B = TVaR,(5°)

Carole Bernard Assessing Model Risk in High Dimensions 39
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Bounds on VaR

Theorem (Constrained VaR Bounds for Zfl:l Xi)

Assume (X1, Xa, ..., Xy) satisfies properties (i), (ii) and (iii), and let
(Z1,22,...,Z4), U and 1 as defined before. Define the variables L;
and H; as

L,' = LTVaRU (Z,) and H,' = TVaRU (Z,)
and let

mp = VaRp (]1 27:1 Xi aF (1 — ]I) Z?:l L’)
S = e

Bounds on the Value-at-Risk are m, < VaR, (Z;j:l X,-) < M,
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Value-at-Risk of a Mixture

Lemma

Consider a sum S =1X+ (1 —1)Y, where I is a Bernoulli
distributed random variable with parameter ps and where the
components X and Y are independent of I. Define «, € [0,1] by

s {acy 3e0n { S0 om=e )

and let B, = ETP2= € [0,1]. Then, for p € (0,1),

VaR,(S) = max{VaR,,(X), VaRs, (Y)}

Applying this lemma, one can prove a more convenient expression
to compute the VaR bounds.
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Let us define T := FZ,—X,-|(X1,X2,...,Xd)ef(U)'

Theorem (Alternative formulation of the upper bound for VaR)

Assume (X1, Xa, ..., X4) satisfies properties (i), (ii) and (iii), and let
(Z1, 2>, ..., Zq) and 1 as defined before.

With oy = max{O, p+57:—1} and ci; = min {1, %},

a, = infSa € (ar,a2) | VaRy(T) = TVaRp—pa <Zd 1 Zi)}

1=
1—pf
—1
When PPl P
pr < < pr’

d
Mp = TVaRp—prax (Z Z,-)

e \iot

The lower bound m,, is obtained by replacing “TVaR" by “LTVaR".
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Numerical Results, F =[q3,q:_5]9, p=0.1

Uu==>0 U = R9
B=0%| B=005% B=05% B=05
p=95% 125 | (122,133) | (10.7,27.7) | (-217,413)

p=99.95% | 25.1 [(242,711)](21.5,71.1) [ (-0.035,671.1) |

e U = () : No uncertainty (multivariate standard normal model).
e 3,000,000 simulations: all digits reported are significant.

Carole Bernard Assessing Model Risk in High Dimensions 43



Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions

Numerical Results, F =[g3,q1-5]9, p=0.1

U=19 U =R?
B=0%| f=0.05% B =05% B =05
p=95% 125 | (122,133) | (10.7,27.7) | (-2.17,413)

p=99.95% | 25.1 [(242,711)](21.5,71.1) [ (-0.035,671.1) |

e U =0 : No uncertainty (multivariate standard normal model).
e 3,000,000 simulations: all digits reported are significant.

» The risk for an underestimation of VaR is increasing in
the probability level used to assess the VaR.

» When very high probability levels are used in the VaR
calculations (p = 99.95%), the constrained bounds are very
close to the unconstrained bounds even when there is almost
no uncertainty on the dependence (8 = 0.05%).

» So despite all the added information on dependence, the
bounds are still wide!
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With Pareto risks

Consider d = 20 risks distributed as Pareto with parameter 6 = 3.
e Assume we trust the independence conditional on being in F;

d
F1= ﬂ {ap < Xk < q1-5}
k=1
where qﬁ = (]_ _ B *1/9 —1
U="1 U=R?
F B=0% | B=0.06% B=0.5% p=05

a=95% 166 | (16,184) | (138,37.4) | (7.29,614)
a=99.95% | 435 | (265,359) | (20.5,359) | (9.83,359)
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Incorporating Expert’s Judgements

Consider d = 20 risks distributed as Pareto 8 = 3.
e Assume comonotonicity conditional on being in F»

d

Fo=J X > qp}
k=1

Comonotonic estimates of Value-at-Risk
V3R95%(5C) = 34297 V3R99.95%(SC) = 23198
Uu==0

T (Model) | p=99.5% | p=99.9% | p=99.95%
a=95% 166 | (835,50) | (7.47,56.7) | (7.38,583)
a=99.95% | 435 | (232,232) | (232,232) | (180,232)
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Comparison

Value-at-Risk

Independence within a rectangle 71 = ﬂgzl {98 < Xk < q1_3}

U=10 U=Rq

2 B=0%| B=0.05% B =05% B=05
a=95% 166 | (16,184) | (138,37.4) | (7.29,614)
0=99.95% | 435 | (265,359) | (205,359) | (9.83,359)

Comonotonicity when one of the risks is large F» = |J?_; {Xk > g, }

U=10
o (Model) | p=99.5% p = 99.9% p = 99.95%
a=95% | 166 | (835,50) | (7.47,56.7) | (7.38,583)
a=99.05% | 435 | (232,232) | (232,232) | (180,232)
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Algorithm to approximate sharp bounds

e A detailed algorithm to approximate sharp bounds is given in
the paper.

e An application to a portfolio of stocks using market data is
also fully developed.
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Algorithm to approximate sharp bounds

From the lemma, the VaR of a mixture is obtained as the
maximum of two VaRs.

At the upper bound, this VaR becomes a TVaR (proposition).

Compute oy and find a dependence in the vector
(Z1, 2, ..., Z4) such that

VaRﬁ* (i Z,‘) = TVaRg* <i Z,'> (5)

i=1

where 3, = %g;*

This is the spirit of the algorithm... where we find the number
of rows to take in the untrusted matrix to apply the RA.
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Conclusions

Assess model risk with partial information and given marginals
(by Monte Carlo from the fitted distribution or
non-parametrically)

We provide several ways to choose the trusted area F: d-cube
or contours of a multivariate density fitted to data. Open
question: how to optimally do so?

N too small but one believes in fitted marginals then improve
the efficiency of the algorithm by re-discretizing using the
fitted marginal f.

Possible to amplify the tails of the marginals if one does not
trust the marginals, e.g., apply a distortion to amplify the tails
when re-discretizing.

Additional information on dependence can be incorporated

- variance of the sum (WP with Riischendorf,Vanduffel)
- higher moments (WP with Denuit, Vanduffel)
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