Assessing Model Risk on Dependence in High Dimensions

Carole Bernard (University of Waterloo) & Steven Vanduffel (Vrije Universiteit Brussel)

o Research Institute in Insurance, Securities & Quantitative Finance

Ulm. March 2014.

Introd	uction

• A key issue in capital adequacy and solvency is to **aggregate risks** (by summing capital requirements?) and potentially account for **diversification** (to reduce the total capital?)

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk

- A key issue in capital adequacy and solvency is to **aggregate risks** (by summing capital requirements?) and potentially account for **diversification** (to reduce the total capital?)
- Using the standard deviation to measure the risk of aggregating X₁ and X₂ with standard deviation σ₁ and σ₂,

$$std(X_1+X_2) = \sqrt{\sigma_1^2+\sigma_2^2+2
ho\sigma_1\sigma_2}$$

If $\rho < 1$, there are "diversification benefits": aggregating reduces the risk (subadditivity property).

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk

- A key issue in capital adequacy and solvency is to **aggregate risks** (by summing capital requirements?) and potentially account for **diversification** (to reduce the total capital?)
- Using the standard deviation to measure the risk of aggregating X₁ and X₂ with standard deviation σ₁ and σ₂,

$$std(X_1+X_2)=\sqrt{\sigma_1^2+\sigma_2^2+2
ho\sigma_1\sigma_2}$$

If $\rho<$ 1, there are "diversification benefits": aggregating reduces the risk (subadditivity property).

• This is not the case for instance for Value-at-Risk.

 Basel II, Solvency II, Swiss Solvency Test, US Risk Based Capital, Canadian Minimum Continuing Capital and Surplus Requirements (MCCSR): all recognize partially the benefits of diversification and aggregating risks may decrease the overall capital.

- Basel II, Solvency II, Swiss Solvency Test, US Risk Based Capital, Canadian Minimum Continuing Capital and Surplus Requirements (MCCSR): all recognize partially the benefits of diversification and aggregating risks may decrease the overall capital.
- But they also recognize the difficulty to find an adequate model to aggregate risks.

- Basel II, Solvency II, Swiss Solvency Test, US Risk Based Capital, Canadian Minimum Continuing Capital and Surplus Requirements (MCCSR): all recognize partially the benefits of diversification and aggregating risks may decrease the overall capital.
- But they also recognize the difficulty to find an adequate model to aggregate risks.
 - ► Var-covar approach based on a correlation matrix: correlation is a poor measure of dependence, issue with micro-correlation, correlation 0 does not mean independence, problem of tail dependence, correlation is a measure of linear dependence.
 - Copula approach, vine models... : very flexible but prone to model risk
 - Scenario based approach, including identifying common risk factors and incorporate what you know in the model.

Introd	uction

Objectives and Findings

- Model uncertainty on the risk assessment of an aggregate portfolio: the sum of *d* individual dependent risks.
 - Given all information available in the market, what can we say about the maximum and minimum possible values of a given risk measure of the portfolio?

Introd	uction

Objectives and Findings

- Model uncertainty on the risk assessment of an aggregate portfolio: the sum of *d* individual dependent risks.
 - Given all information available in the market, what can we say about the maximum and minimum possible values of a given risk measure of the portfolio?
- Analytical expressions for these maximum and minimum
- A non-parametric method based on the data at hand.

Objectives and Findings

- Model uncertainty on the risk assessment of an aggregate portfolio: the sum of *d* individual dependent risks.
 - Given all information available in the market, what can we say about the maximum and minimum possible values of a given risk measure of the portfolio?
- Analytical expressions for these maximum and minimum
- A non-parametric method based on the data at hand.
- Implications:
 - Current regulation is subject to very high model risk, even if one knows the multivariate distribution almost completely.
 - Able to quantify model risk for a chosen risk measure. We can identify for which risk measures it is meaningful to develop accurate multivariate models.

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk	Conclusions

• Goal: Assess the risk of a portfolio sum $S = \sum_{i=1}^{d} X_i$.

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk	Conclusions

- Goal: Assess the risk of a portfolio sum $S = \sum_{i=1}^{d} X_i$.
- Choose a risk measure ρ(·), fit a multivariate distribution for (X₁, X₂, ..., X_d) and compute ρ(S)

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk	Conclusions

- Goal: Assess the risk of a portfolio sum $S = \sum_{i=1}^{d} X_i$.
- Choose a risk measure ρ(·), fit a multivariate distribution for (X₁, X₂, ..., X_d) and compute ρ(S)
- I How about model risk? How wrong can we be?

Choice of the risk measure

- Variance of X
- <u>Value-at-Risk</u> of X at level $p \in (0, 1)$

$$\operatorname{VaR}_{p}(X) = F_{X}^{-1}(p) = \inf \left\{ x \in \mathbb{R} \mid F_{X}(x) \ge p \right\}$$
(1)

• Tail Value-at-Risk or Expected Shortfall of X

$$\mathsf{TVaR}_p(X) = rac{1}{1-p} \int_p^1 \mathsf{VaR}_u(X) \mathrm{d} u \qquad p \in (0,1)$$

and $p \rightarrow TVaR_p$ is continuous.

• Left Tail Value-at-Risk of X

$$\mathsf{LTVaR}_p(X) = \frac{1}{p} \int_0^p \mathsf{VaR}_u(X) \mathrm{d}u$$

Assessing Model Risk on Dependence with d = 2 Risks

definition: Convex order

X is smaller in convex order, $X \prec_{cx} Y$, if for all convex functions f

$E[f(X)] \leq E[f(Y)]$

Assume first that we trust the marginals $X_i \sim F_i$ but that we have no trust about the dependence structure between the X_i (copula).

Assessing Model Risk on Dependence with d = 2 Risks

definition: Convex order

X is smaller in convex order, $X \prec_{cx} Y$, if for all convex functions f

 $E[f(X)] \leq E[f(Y)]$

Assume first that we trust the marginals $X_i \sim F_i$ but that we have no trust about the dependence structure between the X_i (copula).

In two dimensions, assessing model risk on $\rho(S)$ is linked to the Fréchet-Hoeffding bounds or "extreme dependence".

$$F_1^{-1}(U) + F_2^{-1}(1-U) \prec_{cx} X_1 + X_2 \prec_{cx} F_1^{-1}(U) + F_2^{-1}(U)$$

Assessing Model Risk on Dependence with d = 2 Risks

definition: Convex order

X is smaller in convex order, $X \prec_{cx} Y$, if for all convex functions f

 $E[f(X)] \leq E[f(Y)]$

Assume first that we trust the marginals $X_i \sim F_i$ but that we have no trust about the dependence structure between the X_i (copula).

In two dimensions, assessing model risk on $\rho(S)$ is linked to the Fréchet-Hoeffding bounds or "extreme dependence".

$$F_1^{-1}(U) + F_2^{-1}(1-U) \prec_{cx} X_1 + X_2 \prec_{cx} F_1^{-1}(U) + F_2^{-1}(U)$$

For risk measures preserving convex order (
$$\rho(S) = var(S)$$
,
 $\rho(S) = TVaR(S)$), for $U \sim U(0, 1)$
 $\rho(F_1^{-1}(U) + F_2^{-1}(1 - U)) \leq \rho(S) \leq \rho(F_1^{-1}(U) + F_2^{-1}(U))$
This does not apply to Value at Risk

Carole Bernard

Assessing Model Risk on Dependence with $d \ge 3$ Risks

The Fréchet upper bound corresponds to the comonotonic scenario:

 $X_1 + X_2 + ... + X_d \prec_{cx} F_1^{-1}(U) + F_2^{-1}(U) + ... + F_d^{-1}(U)$

Assessing Model Risk on Dependence with $d \ge 3$ Risks

The Fréchet upper bound corresponds to the comonotonic scenario:

$$X_1 + X_2 + \dots + X_d \prec_{cx} F_1^{-1}(U) + F_2^{-1}(U) + \dots + F_d^{-1}(U)$$

In d ≥ 3 dims, the Fréchet lower bound does not exist: It depends on F₁, F₂,..., F_d. See Wang and Wang (2011, 2014).

Assessing Model Risk on Dependence with $d \ge 3$ Risks

The Fréchet upper bound corresponds to the comonotonic scenario:

 $X_1 + X_2 + \dots + X_d \prec_{cx} F_1^{-1}(U) + F_2^{-1}(U) + \dots + F_d^{-1}(U)$

- In d ≥ 3 dims, the Fréchet lower bound does not exist: It depends on F₁, F₂,..., F_d. See Wang and Wang (2011, 2014).
- In d dimensions
 - Puccetti and Rüschendorf (2012, JCAM): algorithm (RA) to approximate bounds on functionals.
 - Embrechts, Puccetti, Rüschendorf (2013, JBF): application of the RA to find bounds on VaR
 - Bernard, Jiang, Wang (2014, IME): explicit form of the lower bound for convex risk measures of an homogeneous sum.

Issues

- bounds are generally very wide
- ignore all information on dependence.

Carole Bernard

Incorporating Partial Information on Dependence

- With d = 2:
 - subset of bivariate distribution with given measure of association Nelsen et al. (2001 Commun. Stat Theory Methods, 2004, JMVA)
 - bounds for bivariate distribution functions when there are constraints on the values of its quartiles (Nelsen et al. (2004)).
 - 2-dim copula known on a subset of $[0,1]^2 \Rightarrow$ find "improved Fréchet bounds", Tankov (2011, JAP), Bernard et al. (2012, JAP) and Sadooghi-Alvandi et al. (2013, Commun. Stat. Theory Methods).
- With $d \ge 3$: Bounds on the VaR of the sum
 - with known bivariate distributions: Embrechts, Puccetti and Rüschendorf (2013)
 - with the variance of the sum (WP with Rüschendorf, Vanduffel)
 - with higher moments (WP with Denuit, Vanduffel)

First Approach

Second Approac

Conclusions

Our assumptions

Let $(X_1, X_2, ..., X_d)$ be some random vector of interest. Let $\mathcal{F} \subset \mathbb{R}^d$ ("trusted" or "fixed" area) and $\mathcal{U} = \mathbb{R}^d \setminus \mathcal{F}$ ("untrusted" area). We assume that we know

(i) the marginal distribution *F_i* of *X_i* on ℝ for *i* = 1, 2, ..., *d*,
(ii) the distribution of (*X*₁, *X*₂, ..., *X_d*) | {(*X*₁, *X*₂, ..., *X_d*) ∈ *F*}.

(iii) $P((X_1, X_2, ..., X_d) \in \mathcal{F})$

Second Approact

Conclusions

Our assumptions

Let $(X_1, X_2, ..., X_d)$ be some random vector of interest. Let $\mathcal{F} \subset \mathbb{R}^d$ ("trusted" or "fixed" area) and $\mathcal{U} = \mathbb{R}^d \setminus \mathcal{F}$ ("untrusted" area). We assume that we know

(i) the marginal distribution *F_i* of *X_i* on ℝ for *i* = 1, 2, ..., *d*,
(ii) the distribution of (*X*₁, *X*₂, ..., *X_d*) | {(*X*₁, *X*₂, ..., *X_d*) ∈ *F*}.
(iii) *P*((*X*₁, *X*₂, ..., *X_d*) ∈ *F*)

- The joint distribution of (X₁, X₂, ..., X_d) is thus completely specified if F = ℝ^d and U = Ø.
- When only marginals are known: $\mathcal{U} = \mathbb{R}^d$ and $\mathcal{F} = \emptyset$.
- ► Our Goal: Find bounds on ρ(S) := ρ(X₁ + ... + X_d) when (X₁, ..., X_d) satisfy (i), (ii) and (iii).

First Approach

Second Approach

Value-at-Risk

First Approach

Value-at-Risk

Introduction

Model Risk

First Approach

econd Approac

ch Va

Value-at-Risk

Conclusions

 $\mathcal{F} = igcup_{k=1}^2 \left\{ X_k > q_p
ight\} igcup \mathcal{F}_1$

Assume $(X_1, X_2, ..., X_d)$ satisfies (i), (ii) and (iii) and use a risk measure $\rho(\cdot)$. Define

$$\rho_{\mathcal{F}}^{+} := \sup \left\{ \rho \left(\sum_{i=1}^{d} Y_{i} \right) \right\}, \quad \rho_{\mathcal{F}}^{-} := \inf \left\{ \rho \left(\sum_{i=1}^{d} Y_{i} \right) \right\}$$

where the supremum and the infimum are taken over all other (joint distributions of) random vectors $(Y_1, Y_2, ..., Y_d)$ that agree with (i), (ii) and (iii).

Assume $(X_1, X_2, ..., X_d)$ satisfies (i), (ii) and (iii) and use a risk measure $\rho(\cdot)$. Define

$$\rho_{\mathcal{F}}^{+} := \sup \left\{ \rho \left(\sum_{i=1}^{d} Y_{i} \right) \right\}, \quad \rho_{\mathcal{F}}^{-} := \inf \left\{ \rho \left(\sum_{i=1}^{d} Y_{i} \right) \right\}$$

where the supremum and the infimum are taken over all other (joint distributions of) random vectors $(Y_1, Y_2, ..., Y_d)$ that agree with (i), (ii) and (iii).

<u>"Model risk of underestimation"</u> of $\rho(\sum X_i)$ in some chosen benchmark model:

$$\frac{\rho_{\mathcal{F}}^+ - \rho(\sum_{i=1}^n X_i)}{\rho_{\mathcal{F}}^+}$$

<u>"Model risk of overestimation"</u> of $\rho(\sum X_i)$:

$$\frac{\rho(\sum_{i=1}^n X_i) - \rho_{\mathcal{F}}^-}{\rho_{\mathcal{F}}^-}$$

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk	Conclusions

Technical Contributions

- The first approach is practical: an algorithm to approximate the sharp bounds ρ_F⁻ and ρ_F⁺ performed directly using the data at hand (without fitting a model): model risk can be assessed in a fully **non-parametric** way: Use of the rearrangement algorithm of Puccetti and Rüschendorf (2012) and Embrechts et al. (2013).
- The second approach provides theoretical bounds, which can be directly computed within a model (Monte Carlo) but may not be sharp.

Non-parametric Approach

 N observations of the *d*-dimensional vector (x_{i1}, x_{i2}, ..., x_{id}) for i = 1, ..., N. The corresponding N × d matrix:

$$M = (x_{ij})_{i,j}$$

- Each observation (x_{i1}, x_{i2}, ..., x_{id}) occurs with probability ¹/_N naturally (possibly involving repetitions).
- M contains enough data for an accurate description of the marginal distributions of X_k (k = 1, 2, ..., d)
- Define S_N by $S_N(i) = \sum_{k=1}^d x_{ik}$ for (i = 1, 2, ..., N). S_N can be seen as a random variable that takes the value $S_N(i)$ in "state" *i* for i = 1, 2, ..., N.

Goal: Find (sharp) bounds on the risk measure applied to S_N .

Example of M:

N = 8 observations, d = 3 dimensions and 3 observations trusted ($\ell_f = 3$, $p_f = 3/8$)

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk	Conclusions

- The matrix *M* is split into two parts: \mathcal{F}_N : trusted observations, \mathcal{U}_N : "untrusted" part.
- Rearranging the values x_{ik} (i = 1, 2, ..., N) within the k-th column does not affect the marginal distribution X_k but only changes the observed dependence.
- ℓ_f : number of elements in \mathcal{F}_N , ℓ_u : number of elements in \mathcal{U}_N

$$N = \ell_f + \ell_u.$$

- *M* has ℓ_f grey rows and ℓ_u white rows.
- S_N^f and S_N^u consist of sums in \mathcal{F}_N and \mathcal{U}_N .

$$\mathbf{Example: } N = 8, \ d = 3 \text{ with } 3 \text{ observations trusted } (\ell_f = 3)$$

$$\begin{bmatrix} 3 & 4 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 0 & 1 \\ 1 & 1 & 2 \\ 4 & 2 & 3 \end{bmatrix} \qquad S_N = \begin{bmatrix} 8 \\ 3 \\ 5 \\ 3 \\ 8 \\ 4 \\ 9 \end{bmatrix}$$

$$M = \begin{bmatrix} 3 & 4 & 1 \\ 2 & 4 & 2 \\ 0 & 2 & 1 \\ 4 & 3 & 3 \\ 3 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \qquad S_N^f = \begin{bmatrix} 8 \\ 8 \\ 3 \end{bmatrix}, \qquad S_N^u = \begin{bmatrix} 10 \\ 7 \\ 4 \\ 3 \\ 1 \end{bmatrix}$$

Bounds on Variance (or TVaR) - Maximum variance

Maximum in convex order:

upper Fréchet bound, comonotonic scenario

- To maximize the variance of S_N : comonotonic scenario on \mathcal{U}_N , and the corresponding values of the sums are exactly the values \tilde{s}_i $(i = 1, 2, ..., \ell_u)$ in S_N^u .
- The upper bound on variance is then computed as

$$\frac{1}{N}\left(\sum_{i=1}^{\ell_f}(s_i-\bar{s})^2+\sum_{i=1}^{\ell_u}(\tilde{s}_i-\bar{s})^2\right)$$
(2)

where the average sum $\bar{s} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{d} x_{ij}$

Example: Maximum Variance

With the matrix M of observations

$$M = \begin{bmatrix} 3 & 4 & 1 \\ 2 & 4 & 2 \\ 0 & 2 & 1 \\ 4 & 3 & 3 \\ 3 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad S_N^f = \begin{bmatrix} 8 \\ 8 \\ 3 \end{bmatrix}, \quad S_N^u = \begin{bmatrix} 10 \\ 7 \\ 4 \\ 3 \\ 1 \end{bmatrix}$$

The average sum is $\bar{s} = 5.5$. The maximum variance is equal to

$$\frac{1}{8} \left(\sum_{i=1}^{3} (s_i - \bar{s})^2 + \sum_{i=1}^{5} (\tilde{s}_i^c - \bar{s})^2 \right) \approx 8.75$$

Bounds on Variance (or TVaR) - Minimum variance

Minimum in convex order

The rearrangement algorithm (RA) of Puccetti & Rüschendorf, 2012 aims to obtain sums that are "smallest possible" (for convex order).

Idea of the RA

Columns of *M* are rearranged such that they become anti-monotonic with the sum of all other columns "until convergence is reached".

$$orall k \in \{1,2,...,n\}, X_k$$
 antimonotonic with $\sum_{j
eq k} X_j$

► Note that after each step,

$$var\left(X_k^a + \sum_{j \neq k} X_j\right) \leq var\left(X_k + \sum_{j \neq k} X_j\right)$$
 where X_k^a is
antimonotonic with $\sum_{j \neq k} X_j$

Carole Bernard

Introduction

Example: Minimum Variance

$$M = \begin{bmatrix} 3 & 4 & 1 \\ 2 & 4 & 2 \\ 0 & 2 & 1 \\ 4 & 3 & 3 \\ 3 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad S_N^f = \begin{bmatrix} 8 \\ 8 \\ 3 \\ \end{bmatrix}, \quad S_N^u = \begin{bmatrix} 10 \\ 7 \\ 4 \\ 3 \\ 1 \end{bmatrix}$$

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk	Conclusions
	_				

Example: Minimum Variance

$$M = \begin{bmatrix} 3 & 4 & 1 \\ 2 & 4 & 2 \\ 0 & 2 & 1 \\ 4 & 3 & 3 \\ 3 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad S_N^f = \begin{bmatrix} 8 \\ 8 \\ 3 \end{bmatrix}, \quad S_N^u = \begin{bmatrix} 10 \\ 7 \\ 4 \\ 3 \\ 1 \end{bmatrix}$$

For the minimum variance, construct convex smallest distribution for S_N^u (ideally constant, "joint mixability") \Rightarrow RA on U_N

$$M = \begin{bmatrix} 3 & 4 & 1 \\ 2 & 4 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 3 \\ 0 & 3 & 2 \\ 1 & 2 & 2 \\ 3 & 1 & 1 \\ 4 & 0 & 1 \end{bmatrix}, \quad S_N^f = \begin{bmatrix} 8 \\ 8 \\ 3 \end{bmatrix}, \quad S_N^u = \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{bmatrix}$$

The minimum variance is
$$\frac{1}{8} \left(\sum_{i=1}^{3} (s_i - \bar{s})^2 + \sum_{i=1}^{5} (\tilde{s}_i^m - \bar{s})^2 \right) \approx 2.5$$

Carole Bernard

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk	Conclusions

Some Notation

• Define $p_f := P(\mathbb{I} = 1)$ and $p_u := P(\mathbb{I} = 0)$ where

$$\mathbb{I} := \mathbb{1}_{(X_1, X_2, \dots, X_d) \in \mathcal{F}}$$
(3)

- Let $U \sim \mathcal{U}(0,1)$ independent of the event " $(X_1, X_2, ..., X_d) \in \mathcal{F}$ " (so U is independent of \mathbb{I}).
- Define (*Z*₁, *Z*₂, ..., *Z*_d) by

$$Z_{i} = F_{X_{i}|(X_{1}, X_{2}, ..., X_{d}) \in \mathcal{U}}^{-1}(U), \qquad i = 1, 2, ..., d$$
(4)

 All Z_i (i = 1, 2, ..., d) are increasing in U and thus (Z₁, Z₂, ..., Z_d) is comonotonic with known distribution.

	÷			÷		
	L					

Bounds on Variance

Theorem (Bounds on the variance of $\sum_{i=1}^{d} X_i$)

Let $(X_1, X_2, ..., X_d)$ that satisfies properties (i), (ii) and (iii) and let $(Z_1, Z_2, ..., Z_d)$ and \mathbb{I} as defined before.

$$\operatorname{var}\left(\mathbb{I}\sum_{i=1}^{d}X_{i}+(1-\mathbb{I})\sum_{i=1}^{d}E(Z_{i})\right)\leqslant\operatorname{var}\left(\sum_{i=1}^{d}X_{i}\right)$$
$$\leqslant\operatorname{var}\left(\mathbb{I}\sum_{i=1}^{d}X_{i}+(1-\mathbb{I})\sum_{i=1}^{d}Z_{i}\right)$$

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk	Conclusions

Example

- Assume *d* = 20.
- (i) $(X_1, ..., X_{20})$ is a random vector with N(0,1) marginals.
- (ii) (X₁,..., X₂₀) follows a multivariate standard normal distribution with correlation parameter (pairwise correlation) ρ on

$$\mathcal{F}:=[\pmb{q}_eta,\pmb{q}_{1-eta}]^d\subset\mathbb{R}^d$$

(for some $\beta < 50\%$) where q_{γ} is the quantile of N(0,1) at level γ .

- $\triangleright \beta = 0\%$: no uncertainty
- ▶ $\beta = 50\%$ full uncertainty

Introduction

Model Risk

First Approach

Second Approach

Conclusions

Numerical Results

	$\mathcal{U}=\emptyset$			$\mathcal{U}=\mathbb{R}^d$
$\mathcal{F} = [\pmb{q}_eta, \pmb{q}_{1-eta}]^d$	eta=0%	eta=0.05%	eta= 0.5%	eta= 50%
$\rho = 0$	4.47	(4.4 , 5.65)	(3.89 , 10.6)	(0,20)
ho = 0.1	7.62	(7.41 , 8.26)	(6.23 , 11.7)	(0,20)

- First column: standard deviation of ∑²⁰_{i=1} X_i under the assumption of multivariate normality (no dependence uncertainty, i.e., U = Ø).
- Lower and upper bounds of the standard deviation of $\sum_{i=1}^{20} X_i$ are reported as pairs $(\rho_{\mathcal{F}}^-, \rho_{\mathcal{F}}^+)$ for various confidence levels β .
- 3,000,000 simulations: all digits reported in the table are significant.

Observations

Impact of model risk on the standard deviation can be substantial even when the joint distribution (X₁, ..., X_d) is almost perfectly known (β close to 0, p_u close to 0).

Observations

- Impact of model risk on the standard deviation can be substantial even when the joint distribution (X₁,...,X_d) is almost perfectly known (β close to 0, p_u close to 0).
- β = 0.05% and ρ = 0. In this case, p_u = 1 − 0.999²⁰ ≈ 0.02. Here, using a multivariate normal assumption might underestimate the standard deviation by (5.65-4.47)/4.47=26.4% and overestimate it by (4.47-4.4)/4.4=1.6%.
- Thus the multivariate normality does not seem to be a prudent assumption: more likely to underestimate risk than to overestimate it.

Observations

- Impact of model risk on the standard deviation can be substantial even when the joint distribution (X₁,...,X_d) is almost perfectly known (β close to 0, p_u close to 0).
- β = 0.05% and ρ = 0. In this case, p_u = 1 − 0.999²⁰ ≈ 0.02. Here, using a multivariate normal assumption might underestimate the standard deviation by (5.65-4.47)/4.47=26.4% and overestimate it by (4.47-4.4)/4.4=1.6%.
- Thus the multivariate normality does not seem to be a prudent assumption: more likely to underestimate risk than to overestimate it.
- Adding partial information on dependence (ie when β < 50%) reduces the unconstrained bounds (β = 50%).
- when β = 0.5% and ρ = 0, p_u = 1 − 0.99²⁰ ≈ 0.18 and the unconstrained upper bound for the standard deviation shrinks by approximately 50% (it decreases from 20 to 10.6).

Carole Bernard

Bounds on TVaR or any risk measure satisfying convex order

Theorem (Bounds on the TVaR of $\sum_{i=1}^{d} X_i$)

Assume $(X_1, X_2, ..., X_d)$ satisfies (i), (ii) and (iii), and let $(Z_1, Z_2, ..., Z_d)$ and \mathbb{I} as defined before.

$$TVaR_{p}\left(\mathbb{I}\sum_{i=1}^{d}X_{i}+(1-\mathbb{I})\sum_{i=1}^{d}E(Z_{i})\right)\leqslant TVaR_{p}\left(\sum_{i=1}^{d}X_{i}\right)$$
$$\leqslant TVaR_{p}\left(\mathbb{I}\sum_{i=1}^{d}X_{i}+(1-\mathbb{I})\sum_{i=1}^{d}Z_{i}\right)$$

Bounds on TVaR or any risk measure satisfying convex order

Theorem (Bounds on the TVaR of $\sum_{i=1}^{d} X_i$)

Assume $(X_1, X_2, ..., X_d)$ satisfies (i), (ii) and (iii), and let $(Z_1, Z_2, ..., Z_d)$ and \mathbb{I} as defined before.

$$TVaR_{p}\left(\mathbb{I}\sum_{i=1}^{d}X_{i}+(1-\mathbb{I})\sum_{i=1}^{d}E(Z_{i})\right) \leqslant TVaR_{p}\left(\sum_{i=1}^{d}X_{i}\right)$$
$$\leqslant TVaR_{p}\left(\mathbb{I}\sum_{i=1}^{d}X_{i}+(1-\mathbb{I})\sum_{i=1}^{d}Z_{i}\right)$$

- Same example with the standard multivariate model as benchmark.
- Conclusions are similar to the variance.

Carole Bernard

1 .				
	200		CT1	on

Bounds on Value-at-Risk

Carole Bernard

Assessing Model Risk in High Dimensions 33

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk	Conclusions

Bounds on Value-at-Risk

Previous approach works for all risk measures that satisfy convex order... But not for Value-at-Risk(S)

- ► to maximize VaR_p, the idea is to change the comonotonic dependence of Z_i such that the sum is constant beyond the (comonotonic) VaR level
- ▶ to minimize VaR_p, the idea is to change the comonotonic dependence of Z_i such that the sum is constant in the left tail, below the (comonotonic) VaR level (or lowest variance)

Bounds on VaR

Theorem (Constrained VaR Bounds for $\sum_{i=1}^{d} X_i$)

Assume $(X_1, X_2, ..., X_d)$ satisfies properties (i), (ii) and (iii), and let $(Z_1, Z_2, ..., Z_d)$, U and I as defined before. Define the variables L_i and H_i as

$$L_i = LTVaR_U(Z_i)$$
 and $H_i = TVaR_U(Z_i)$

and let

$$m_{p} := VaR_{p} \left(\mathbb{I} \sum_{i=1}^{d} X_{i} + (1 - \mathbb{I}) \sum_{i=1}^{d} L_{i} \right)$$
$$M_{p} := VaR_{p} \left(\mathbb{I} \sum_{i=1}^{d} X_{i} + (1 - \mathbb{I}) \sum_{i=1}^{d} H_{i} \right)$$

Bounds on the Value-at-Risk are $m_p \leq VaR_p\left(\sum_{i=1}^d X_i\right) \leq M_p$.

Carole Bernard

Introduction

Value-at-Risk of a Mixture

Lemma

Consider a sum $S = \mathbb{I}X + (1 - \mathbb{I})Y$, where \mathbb{I} is a Bernoulli distributed random variable with parameter p_f and where the components X and Y are independent of \mathbb{I} . Define $\alpha_* \in [0, 1]$ by

$$\alpha_* := \inf \left\{ \alpha \in (0,1) \mid \exists \beta \in (0,1) \left\{ \begin{array}{c} p_f \alpha + (1-p_f)\beta = p \\ VaR_\alpha(X) \geqslant VaR_\beta(Y) \end{array} \right\} \right\}$$

and let $\beta_* = \frac{p-p_f \alpha_*}{1-p_f} \in [0,1]$. Then, for $p \in (0,1)$,

 $VaR_{p}(S) = \max \{ VaR_{\alpha_{*}}(X), VaR_{\beta_{*}}(Y) \}$

Applying this lemma, one can prove a more convenient expression to compute the VaR bounds.

Carole Bernard

Let us define
$$\mathcal{T}:=\mathcal{F}_{\sum_{i}X_{i}|(X_{1},X_{2},...,X_{d})\in\mathcal{F}}^{-1}(U).$$

Theorem (Alternative formulation of the upper bound for VaR)

Assume $(X_1, X_2, ..., X_d)$ satisfies properties (i), (ii) and (iii), and let $(Z_1, Z_2, ..., Z_d)$ and \mathbb{I} as defined before. With $\alpha_1 = \max\left\{0, \frac{p+p_f-1}{p_f}\right\}$ and $\alpha_2 = \min\left\{1, \frac{p}{p_f}\right\}$, $\alpha_* := \inf \left\{ \alpha \in (\alpha_1, \alpha_2) \mid VaR_{\alpha}(T) \geqslant TVaR_{\frac{p-p_f\alpha}{1-p_c}}\left(\sum_{i=1}^d Z_i\right) \right\}$ When $\frac{p+p_f-1}{p_f} < \alpha_* < \frac{p}{p_f}$, $M_{p} = T VaR_{\frac{p-p_{f}\alpha_{*}}{1-p_{f}}} \left(\sum_{i=1}^{u} Z_{i} \right)$

The lower bound m_p is obtained by replacing "TVaR" by "LTVaR".

Nur	nerical R	esults, $\mathcal{F}=[$	$(q_{eta}, q_{1-eta}]^d, ho$	= 0.1
	$egin{array}{c} \mathcal{U}=\emptyset\ eta=0\% \end{array}$	eta=0.05%	eta=0.5%	$egin{array}{l} \mathcal{U} = \mathbb{R}^d \ eta = 0.5 \end{array}$
p=95%	12.5	(12.2,13.3)	(10.7,27.7)	(-2.17,41.3)
p=99.95%	25.1	(24.2,71.1)	(21.5,71.1)	(-0.035,71.1)

Second Approach

First Approach

- $\mathcal{U} = \emptyset$: No uncertainty (multivariate standard normal model).
- 3,000,000 simulations: all digits reported are significant.

Value-at-Risk

ouu	would		ist Approach	Second	rpproden ve		conclusion.
	Nur	nerical R	esults, ${\cal F}$	$=$ [q_{β}	$, q_{1-\beta}]^d, ho$	0 = 0.1	
		$egin{array}{c} \mathcal{U}=\emptyset\ eta=0\% \end{array}$	$\beta = 0.05$	%	eta=0.5%	$\mathcal{U} = \mathbb{R}^{d}$ $\beta = 0.4$	^d 5
	p=95%	12.5	(12.2,13	3) (10.7 , 27.7)	(-2.17,4	1.3)
	p=99.95%	25.1	(24.2,71	1) (21.5 , 71.1)	(-0.035,7	71.1)

Eirct Approach

- $\mathcal{U} = \emptyset$: No uncertainty (multivariate standard normal model).
- 3,000,000 simulations: all digits reported are significant.
- ► The risk for an underestimation of VaR is increasing in the probability level used to assess the VaR.
- When very high probability levels are used in the VaR calculations (p = 99.95%), the constrained bounds are very close to the unconstrained bounds even when there is almost no uncertainty on the dependence (β = 0.05%).
- So despite all the added information on dependence, the bounds are still wide!

Carole Bernard

Model Dick

Value at Pick

With Pareto risks

Consider d = 20 risks distributed as Pareto with parameter $\theta = 3$. • Assume we trust the independence conditional on being in \mathcal{F}_1

$$\mathcal{F}_1 = igcap_{k=1}^d \left\{ q_eta \leqslant X_k \leqslant q_{1-eta}
ight\}$$

where $q_eta = (1-eta)^{-1/ heta} - 1.$					
	$\mathcal{U}=\emptyset$			$\mathcal{U}=\mathbb{R}^d$	
\mathcal{F}_1	eta=0%	eta=0.05%	eta= 0.5%	eta= 0.5	
<i>α</i> =95%	16.6	(16,18.4)	(13.8,37.4)	(7.29,61.4)	
<i>α</i> =99.95%	43.5	(26.5,359)	(20.5,359)	(9.83,359)	

Incorporating Expert's Judgements

Consider d = 20 risks distributed as Pareto $\theta = 3$.

 \bullet Assume comonotonicity conditional on being in \mathcal{F}_2

$$\mathcal{F}_2 = igcup_{k=1}^d \left\{ X_k > q_p
ight\}$$

Comonotonic estimates of Value-at-Risk

$/aR_{95\%}(S^c) = 34.29, VaR_{99.95\%}(S^c) = 231.98$						
	$\mathcal{U} = \emptyset$					
\mathcal{F}_2	(Model)	p = 99.5%	p=99.9%	p = 99.95%		
$\alpha = 95\%$	16.6	(8.35,50)	(7.47,56.7)	(7.38,58.3)		
<i>α</i> =99.95%	43.5	(232,232)	(232,232)	(180,232)		

Introduction	Model Risk	First Approach	Second Approach	Value-at-Risk	Conclusions

Comparison

Independence within a rectangle $\mathcal{F}_1 = igcap_{k=1}^d \left\{ q_eta \leqslant X_k \leqslant q_{1-eta} ight\}$					
	$\mathcal{U}=\emptyset$			$\mathcal{U}=\mathbb{R}^d$	
\mathcal{F}_1	eta=0%	eta= 0.05%	eta= 0.5%	eta= 0.5	
α= 95%	16.6	(16,18.4)	(13.8,37.4)	(7.29,61.4)	
<i>α</i> =99.95%	43.5	(26.5,359)	(20.5,359)	(9.83,359)	

Comonotonicity when one of the risks is large $\mathcal{F}_2 = \bigcup_{k=1}^d \{X_k > q_p\}$

	$\mathcal{U} = \emptyset$			
\mathcal{F}_2	(Model)	p = 99.5%	p=99.9%	p = 99.95%
<i>α</i> =95%	16.6	(8.35,50)	(7.47,56.7)	(7.38,58.3)
<i>α</i> =99.95%	43.5	(232,232)	(232,232)	(180,232)

Algorithm to approximate sharp bounds

- A detailed algorithm to approximate sharp bounds is given in the paper.
- An application to a portfolio of stocks using market data is also fully developed.

		÷	-	~	d		~	÷	~	
ł		L		U	u	u	C	L	U	

Algorithm to approximate sharp bounds

- From the lemma, the VaR of a mixture is obtained as the maximum of two VaRs.
- At the upper bound, this VaR becomes a TVaR (proposition).
- Compute α_* and find a dependence in the vector $(Z_1, Z_2, ..., Z_d)$ such that

$$\mathsf{VaR}_{\beta_{*}}\left(\sum_{i=1}^{d} Z_{i}\right) = \mathsf{TVaR}_{\beta_{*}}\left(\sum_{i=1}^{d} Z_{i}\right)$$
(5)

where $\beta_* = \frac{p - p_f \alpha_*}{1 - p_f}$

• This is the spirit of the algorithm... where we find the number of rows to take in the untrusted matrix to apply the RA.

Conclusions

- Assess model risk with partial information and given marginals (by Monte Carlo from the fitted distribution or non-parametrically)
- ▶ We provide several ways to choose the trusted area *F*: *d*-cube or contours of a multivariate density fitted to data. Open question: how to optimally do so?
- ▶ *N* too small but one believes in fitted marginals then improve the efficiency of the algorithm by re-discretizing using the fitted marginal \hat{f}_i .
- Possible to amplify the tails of the marginals if one does not trust the marginals, e.g., apply a distortion to amplify the tails when re-discretizing.
- Additional information on dependence can be incorporated
 - variance of the sum (WP with Rüschendorf, Vanduffel)
 - higher moments (WP with Denuit, Vanduffel)

References

- Bernard, C., X. Jiang, and R. Wang (2014): "Risk Aggregation with Dependence Uncertainty," *Insurance: Mathematics and Economics*.
- Bernard, C., Y. Liu, N. MacGillivray, and J. Zhang (2013): "Bounds on Capital Requirements For Bivariate Risk with Given Marginals and Partial Information on the Dependence," *Dependence Modelling*.
- Bernard, C., L. Rüschendorf, and S. Vanduffel (2013): "VaR Bounds with a Variance Constraint," Working Paper.
- Embrechts, P., G. Puccetti, and L. Rüschendorf (2013): "Model uncertainty and VaR aggregation," *Journal of Banking & Finance*.
- Puccetti, G., and L. Rüschendorf (2012): "Computation of sharp bounds on the distribution of a function of dependent risks," *Journal of Computational and Applied Mathematics*, 236(7), 1833–1840.
- Tankov, P., 2011. "Improved Fréchet bounds and model-free pricing of multi-asset options," *Journal of Applied Probability*.
- Wang, B., and R. Wang (2011): "The complete mixability and convex minimization problems with monotone marginal densities," *Journal of Multivariate Analysis*, 102(10), 1344–1360.
- ▶ Wang, B., and R. Wang (2014): "Joint Mixability," Working paper.