Assessing Model Risk on Dependence in High Dimensions

Carole Bernard (University of Waterloo)
\& Steven Vanduffel (Vrije Universiteit Brussel)

Ulm, March 2014.

Risk Aggregation and Diversification

- A key issue in capital adequacy and solvency is to aggregate risks (by summing capital requirements?) and potentially account for diversification (to reduce the total capital?)

Risk Aggregation and Diversification

- A key issue in capital adequacy and solvency is to aggregate risks (by summing capital requirements?) and potentially account for diversification (to reduce the total capital?)
- Using the standard deviation to measure the risk of aggregating X_{1} and X_{2} with standard deviation σ_{1} and σ_{2},

$$
\operatorname{std}\left(X_{1}+X_{2}\right)=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2}}
$$

If $\rho<1$, there are "diversification benefits" : aggregating reduces the risk (subadditivity property).

Risk Aggregation and Diversification

- A key issue in capital adequacy and solvency is to aggregate risks (by summing capital requirements?) and potentially account for diversification (to reduce the total capital?)
- Using the standard deviation to measure the risk of aggregating X_{1} and X_{2} with standard deviation σ_{1} and σ_{2},

$$
\operatorname{std}\left(X_{1}+X_{2}\right)=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2}}
$$

If $\rho<1$, there are "diversification benefits" : aggregating reduces the risk (subadditivity property).

- This is not the case for instance for Value-at-Risk.

Risk Aggregation and Diversification

- Basel II, Solvency II, Swiss Solvency Test, US Risk Based Capital, Canadian Minimum Continuing Capital and Surplus Requirements (MCCSR): all recognize partially the benefits of diversification and aggregating risks may decrease the overall capital.

Risk Aggregation and Diversification

- Basel II, Solvency II, Swiss Solvency Test, US Risk Based Capital, Canadian Minimum Continuing Capital and Surplus Requirements (MCCSR): all recognize partially the benefits of diversification and aggregating risks may decrease the overall capital.
- But they also recognize the difficulty to find an adequate model to aggregate risks.

Risk Aggregation and Diversification

- Basel II, Solvency II, Swiss Solvency Test, US Risk Based Capital, Canadian Minimum Continuing Capital and Surplus Requirements (MCCSR): all recognize partially the benefits of diversification and aggregating risks may decrease the overall capital.
- But they also recognize the difficulty to find an adequate model to aggregate risks.
- Var-covar approach based on a correlation matrix: correlation is a poor measure of dependence, issue with micro-correlation, correlation 0 does not mean independence, problem of tail dependence, correlation is a measure of linear dependence.
- Copula approach, vine models... : very flexible but prone to model risk
- Scenario based approach, including identifying common risk factors and incorporate what you know in the model.

Objectives and Findings

- Model uncertainty on the risk assessment of an aggregate portfolio: the sum of d individual dependent risks.
- Given all information available in the market, what can we say about the maximum and minimum possible values of a given risk measure of the portfolio?

Objectives and Findings

- Model uncertainty on the risk assessment of an aggregate portfolio: the sum of d individual dependent risks.
- Given all information available in the market, what can we say about the maximum and minimum possible values of a given risk measure of the portfolio?
- Analytical expressions for these maximum and minimum
- A non-parametric method based on the data at hand.

Objectives and Findings

- Model uncertainty on the risk assessment of an aggregate portfolio: the sum of d individual dependent risks.
- Given all information available in the market, what can we say about the maximum and minimum possible values of a given risk measure of the portfolio?
- Analytical expressions for these maximum and minimum
- A non-parametric method based on the data at hand.
- Implications:
- Current regulation is subject to very high model risk, even if one knows the multivariate distribution almost completely.
- Able to quantify model risk for a chosen risk measure. We can identify for which risk measures it is meaningful to develop accurate multivariate models.

Model Risk

(1) Goal: Assess the risk of a portfolio sum $S=\sum_{i=1}^{d} X_{i}$.

Model Risk

(1) Goal: Assess the risk of a portfolio sum $S=\sum_{i=1}^{d} X_{i}$.
(2) Choose a risk measure $\rho(\cdot)$, fit a multivariate distribution for $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ and compute $\rho(S)$

Model Risk

(1) Goal: Assess the risk of a portfolio sum $S=\sum_{i=1}^{d} X_{i}$.
(2) Choose a risk measure $\rho(\cdot)$, fit a multivariate distribution for $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ and compute $\rho(S)$
(3) How about model risk? How wrong can we be?

Choice of the risk measure

- Variance of X
- Value-at-Risk of X at level $p \in(0,1)$

$$
\begin{equation*}
\operatorname{VaR}_{p}(X)=F_{X}^{-1}(p)=\inf \left\{x \in \mathbb{R} \mid F_{X}(x) \geqslant p\right\} \tag{1}
\end{equation*}
$$

- Tail Value-at-Risk or Expected Shortfall of X

$$
\operatorname{TVaR}_{p}(X)=\frac{1}{1-p} \int_{p}^{1} \operatorname{VaR}_{u}(X) \mathrm{d} u \quad p \in(0,1)
$$

and $p \rightarrow \mathrm{TVaR}_{p}$ is continuous.

- Left Tail Value-at-Risk of X

$$
\operatorname{LTVaR}_{p}(X)=\frac{1}{p} \int_{0}^{p} \operatorname{VaR}_{u}(X) \mathrm{d} u
$$

Assessing Model Risk on Dependence with $d=2$ Risks

definition: Convex order
X is smaller in convex order, $X \prec_{c x} Y$, if for all convex functions f

$$
E[f(X)] \leqslant E[f(Y)]
$$

Assume first that we trust the marginals $X_{i} \sim F_{i}$ but that we have no trust about the dependence structure between the X_{i} (copula).

Assessing Model Risk on Dependence with $d=2$ Risks

definition: Convex order

X is smaller in convex order, $X \prec_{c x} Y$, if for all convex functions f

$$
E[f(X)] \leqslant E[f(Y)]
$$

Assume first that we trust the marginals $X_{i} \sim F_{i}$ but that we have no trust about the dependence structure between the X_{i} (copula). In two dimensions, assessing model risk on $\rho(S)$ is linked to the Fréchet-Hoeffding bounds or "extreme dependence".

$$
F_{1}^{-1}(U)+F_{2}^{-1}(1-U) \prec_{c x} X_{1}+X_{2} \prec_{c x} F_{1}^{-1}(U)+F_{2}^{-1}(U)
$$

Assessing Model Risk on Dependence with $d=2$ Risks

definition: Convex order

X is smaller in convex order, $X \prec_{c x} Y$, if for all convex functions f

$$
E[f(X)] \leqslant E[f(Y)]
$$

Assume first that we trust the marginals $X_{i} \sim F_{i}$ but that we have no trust about the dependence structure between the X_{i} (copula). In two dimensions, assessing model risk on $\rho(S)$ is linked to the Fréchet-Hoeffding bounds or "extreme dependence".

$$
F_{1}^{-1}(U)+F_{2}^{-1}(1-U) \prec_{c x} X_{1}+X_{2} \prec_{c x} F_{1}^{-1}(U)+F_{2}^{-1}(U)
$$

- For risk measures preserving convex order $(\rho(S)=\operatorname{var}(S)$,

$$
\begin{aligned}
& \rho(S)=T \operatorname{VaR}(S)), \text { for } U \sim \mathcal{U}(0,1) \\
& \quad \rho\left(F_{1}^{-1}(U)+F_{2}^{-1}(1-U)\right) \leqslant \rho(S) \leqslant \rho\left(F_{1}^{-1}(U)+F_{2}^{-1}(U)\right)
\end{aligned}
$$

This does not apply to Value-at-Risk.

Assessing Model Risk on Dependence with $d \geqslant 3$ Risks

- The Fréchet upper bound corresponds to the comonotonic scenario:

$$
X_{1}+X_{2}+\ldots+X_{d} \prec_{c x} F_{1}^{-1}(U)+F_{2}^{-1}(U)+\ldots+F_{d}^{-1}(U)
$$

Assessing Model Risk on Dependence with $d \geqslant 3$ Risks

- The Fréchet upper bound corresponds to the comonotonic scenario:

$$
X_{1}+X_{2}+\ldots+X_{d} \prec_{c x} F_{1}^{-1}(U)+F_{2}^{-1}(U)+\ldots+F_{d}^{-1}(U)
$$

- In $d \geqslant 3$ dims, the Fréchet lower bound does not exist: It depends on $F_{1}, F_{2}, \ldots, F_{d}$. See Wang and Wang (2011, 2014).

Assessing Model Risk on Dependence with $d \geqslant 3$ Risks

- The Fréchet upper bound corresponds to the comonotonic scenario:

$$
X_{1}+X_{2}+\ldots+X_{d} \prec_{c x} F_{1}^{-1}(U)+F_{2}^{-1}(U)+\ldots+F_{d}^{-1}(U)
$$

- In $d \geqslant 3$ dims, the Fréchet lower bound does not exist: It depends on $F_{1}, F_{2}, \ldots, F_{d}$. See Wang and Wang (2011, 2014).
- In d dimensions
- Puccetti and Rüschendorf (2012, JCAM): algorithm (RA) to approximate bounds on functionals.
- Embrechts, Puccetti, Rüschendorf (2013, JBF): application of the RA to find bounds on VaR
- Bernard, Jiang, Wang (2014, IME): explicit form of the lower bound for convex risk measures of an homogeneous sum.
- Issues
- bounds are generally very wide
- ignore all information on dependence.

Incorporating Partial Information on Dependence

- With $d=2$:
- subset of bivariate distribution with given measure of association Nelsen et al. (2001 Commun. Stat Theory Methods, 2004, JMVA)
- bounds for bivariate distribution functions when there are constraints on the values of its quartiles (Nelsen et al. (2004)).
- 2-dim copula known on a subset of $[0,1]^{2} \Rightarrow$ find "improved Fréchet bounds", Tankov (2011, JAP), Bernard et al. (2012, JAP) and Sadooghi-Alvandi et al. (2013, Commun. Stat. Theory Methods).
- With $d \geqslant 3$: Bounds on the VaR of the sum
- with known bivariate distributions: Embrechts, Puccetti and Rüschendorf (2013)
- with the variance of the sum (WP with Rüschendorf,Vanduffel)
- with higher moments (WP with Denuit, Vanduffel)

Our assumptions

Let $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ be some random vector of interest. Let $\mathcal{F} \subset \mathbb{R}^{d}$ ("trusted" or "fixed" area) and $\mathcal{U}=\mathbb{R}^{d} \backslash \mathcal{F}$ ("untrusted" area). We assume that we know
(i) the marginal distribution F_{i} of X_{i} on \mathbb{R} for $i=1,2, \ldots, d$,
(ii) the distribution of $\left(X_{1}, X_{2}, \ldots, X_{d}\right) \mid\left\{\left(X_{1}, X_{2}, \ldots, X_{d}\right) \in \mathcal{F}\right\}$.
(iii) $P\left(\left(X_{1}, X_{2}, \ldots, X_{d}\right) \in \mathcal{F}\right)$

Our assumptions

Let $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ be some random vector of interest. Let $\mathcal{F} \subset \mathbb{R}^{d}$ ("trusted" or "fixed" area) and $\mathcal{U}=\mathbb{R}^{d} \backslash \mathcal{F}$ ("untrusted" area). We assume that we know
(i) the marginal distribution F_{i} of X_{i} on \mathbb{R} for $i=1,2, \ldots, d$,
(ii) the distribution of $\left(X_{1}, X_{2}, \ldots, X_{d}\right) \mid\left\{\left(X_{1}, X_{2}, \ldots, X_{d}\right) \in \mathcal{F}\right\}$.
(iii) $P\left(\left(X_{1}, X_{2}, \ldots, X_{d}\right) \in \mathcal{F}\right)$

- The joint distribution of $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ is thus completely specified if $\mathcal{F}=\mathbb{R}^{d}$ and $\mathcal{U}=\emptyset$.
- When only marginals are known: $\mathcal{U}=\mathbb{R}^{d}$ and $\mathcal{F}=\emptyset$.
- Our Goal: Find bounds on $\rho(S):=\rho\left(X_{1}+\ldots+X_{d}\right)$ when (X_{1}, \ldots, X_{d}) satisfy (i), (ii) and (iii).

Illustration with marginals $\mathbf{N}(0,1)$

Illustration with marginals $\mathbf{N}(\mathbf{0 , 1})$

$$
\mathcal{F}_{1}=\bigcap_{k=1}^{2}\left\{q_{\beta} \leqslant X_{k} \leqslant q_{1-\beta}\right\}
$$

Illustration with marginals $\mathbf{N}(\mathbf{0 , 1})$

$$
\mathcal{F}_{1}=\bigcap_{k=1}^{2}\left\{q_{\beta} \leqslant X_{k} \leqslant q_{1-\beta}\right\}
$$

$$
\mathcal{F}=\bigcup_{k=1}^{2}\left\{X_{k}>q_{p}\right\} \bigcup \mathcal{F}_{1}
$$

Illustration with marginals $\mathbf{N}(\mathbf{0 , 1})$

$\mathcal{F}_{1}=$ contour of MVN at β

$$
\mathcal{F}=\bigcup_{k=1}^{2}\left\{X_{k}>q_{p}\right\} \bigcup \mathcal{F}_{1}
$$

Assessing Model Risk in High Dimensions

Model Risk

Assume ($X_{1}, X_{2}, \ldots, X_{d}$) satisfies (i), (ii) and (iii) and use a risk measure $\rho(\cdot)$. Define

$$
\rho_{\mathcal{F}}^{+}:=\sup \left\{\rho\left(\sum_{i=1}^{d} Y_{i}\right)\right\}, \quad \rho_{\mathcal{F}}^{-}:=\inf \left\{\rho\left(\sum_{i=1}^{d} Y_{i}\right)\right\}
$$

where the supremum and the infimum are taken over all other (joint distributions of) random vectors ($Y_{1}, Y_{2}, \ldots, Y_{d}$) that agree with (i), (ii) and (iii).

Model Risk

Assume ($X_{1}, X_{2}, \ldots, X_{d}$) satisfies (i), (ii) and (iii) and use a risk measure $\rho(\cdot)$. Define

$$
\rho_{\mathcal{F}}^{+}:=\sup \left\{\rho\left(\sum_{i=1}^{d} Y_{i}\right)\right\}, \quad \rho_{\mathcal{F}}^{-}:=\inf \left\{\rho\left(\sum_{i=1}^{d} Y_{i}\right)\right\}
$$

where the supremum and the infimum are taken over all other (joint distributions of) random vectors ($Y_{1}, Y_{2}, \ldots, Y_{d}$) that agree with (i), (ii) and (iii).
"Model risk of underestimation" of $\rho\left(\sum X_{i}\right)$ in some chosen benchmark model:

$$
\frac{\rho_{\mathcal{F}}^{+}-\rho\left(\sum_{i=1}^{n} X_{i}\right)}{\rho_{\mathcal{F}}^{+}}
$$

"Model risk of overestimation" of $\rho\left(\sum X_{i}\right)$:

$$
\frac{\rho\left(\sum_{i=1}^{n} X_{i}\right)-\rho_{\mathcal{F}}^{-}}{\rho_{\mathcal{F}}^{-}}
$$

Technical Contributions

(1) The first approach is practical: an algorithm to approximate the sharp bounds $\rho_{\mathcal{F}}^{-}$and $\rho_{\mathcal{F}}^{+}$performed directly using the data at hand (without fitting a model): model risk can be assessed in a fully non-parametric way: Use of the rearrangement algorithm of Puccetti and Rüschendorf (2012) and Embrechts et al. (2013).
(2) The second approach provides theoretical bounds, which can be directly computed within a model (Monte Carlo) but may not be sharp.

First Approach

Approximation of Bounds

(for variance and TVaR)

Non-parametric Approach

- N observations of the d-dimensional vector $\left(x_{i 1}, x_{i 2}, \ldots, x_{i d}\right)$ for $i=1, \ldots, N$. The corresponding $N \times d$ matrix:

$$
M=\left(x_{i j}\right)_{i, j}
$$

- Each observation $\left(x_{i 1}, x_{i 2}, \ldots, x_{i d}\right)$ occurs with probability $\frac{1}{N}$ naturally (possibly involving repetitions).
- M contains enough data for an accurate description of the marginal distributions of $X_{k}(k=1,2, \ldots, d)$
- Define S_{N} by $S_{N}(i)=\sum_{k=1}^{d} x_{i k}$ for $(i=1,2, \ldots, N) . S_{N}$ can be seen as a random variable that takes the value $S_{N}(i)$ in "state" i for $i=1,2, \ldots, N$.

Goal: Find (sharp) bounds on the risk measure applied to S_{N}.

Example of M :

$N=8$ observations, $d=3$ dimensions and 3 observations trusted ($\ell_{f}=3, p_{f}=3 / 8$)

$$
\left[\begin{array}{ccc}
3 & 4 & 1 \\
1 & 1 & 1 \\
0 & 3 & 2 \\
0 & 2 & 1 \\
2 & 4 & 2 \\
3 & 0 & 1 \\
1 & 1 & 2 \\
4 & 2 & 3
\end{array}\right] \quad S_{N}=\left[\begin{array}{l}
8 \\
3 \\
5 \\
3 \\
8 \\
4 \\
4 \\
9
\end{array}\right]
$$

- The matrix M is split into two parts: \mathcal{F}_{N} : trusted observations, \mathcal{U}_{N} : "untrusted" part.
- Rearranging the values $x_{i k}(i=1,2, \ldots, N)$ within the k-th column does not affect the marginal distribution X_{k} but only changes the observed dependence.
- ℓ_{f} : number of elements in $\mathcal{F}_{N}, \ell_{U}$: number of elements in \mathcal{U}_{N}

$$
N=\ell_{f}+\ell_{u} .
$$

- M has ℓ_{f} grey rows and ℓ_{u} white rows.
- S_{N}^{f} and S_{N}^{μ} consist of sums in \mathcal{F}_{N} and \mathcal{U}_{N}.

Example: $N=8, d=3$ with 3 observations trusted $\left(\ell_{f}=3\right)$

$$
\begin{gathered}
{\left[\begin{array}{lll}
3 & 4 & 1 \\
1 & 1 & 1 \\
0 & 3 & 2 \\
0 & 2 & 1 \\
2 & 4 & 2 \\
3 & 0 & 1 \\
1 & 1 & 2 \\
4 & 2 & 3
\end{array}\right] S_{N}=\left[\begin{array}{l}
8 \\
3 \\
5 \\
3 \\
8 \\
4 \\
4 \\
9
\end{array}\right]} \\
M=\left[\begin{array}{lll}
3 & 4 & 1 \\
2 & 4 & 2 \\
0 & 2 & 1 \\
4 & 3 & 3 \\
3 & 2 & 2 \\
1 & 1 & 2 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad S_{N}^{f}=\left[\begin{array}{l}
8 \\
8 \\
3
\end{array}\right], \quad S_{N}^{u}=\left[\begin{array}{c}
10 \\
7 \\
4 \\
3 \\
1
\end{array}\right]
\end{gathered}
$$

Bounds on Variance (or TVaR) - Maximum variance

Maximum in convex order:

upper Fréchet bound, comonotonic scenario

- To maximize the variance of S_{N} : comonotonic scenario on \mathcal{U}_{N}, and the corresponding values of the sums are exactly the values $\tilde{s}_{i}\left(i=1,2, \ldots, \ell_{u}\right)$ in S_{N}^{u}.
- The upper bound on variance is then computed as

$$
\begin{equation*}
\frac{1}{N}\left(\sum_{i=1}^{\ell_{f}}\left(s_{i}-\bar{s}\right)^{2}+\sum_{i=1}^{\ell_{u}}\left(\tilde{s}_{i}-\bar{s}\right)^{2}\right) \tag{2}
\end{equation*}
$$

where the average sum $\bar{s}=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{d} x_{i j}$

Example: Maximum Variance

With the matrix M of observations

$$
M=\left[\begin{array}{lll}
3 & 4 & 1 \\
2 & 4 & 2 \\
0 & 2 & 1 \\
4 & 3 & 3 \\
3 & 2 & 2 \\
1 & 1 & 2 \\
1 & 1 & 1
\end{array}\right], \quad S_{N}^{f}=\left[\begin{array}{c}
8 \\
8 \\
3
\end{array}\right], \quad S_{N}^{u}=\left[\begin{array}{c}
10 \\
7 \\
4 \\
3 \\
1
\end{array}\right]
$$

The average sum is $\bar{s}=5.5$. The maximum variance is equal to

$$
\frac{1}{8}\left(\sum_{i=1}^{3}\left(s_{i}-\bar{s}\right)^{2}+\sum_{i=1}^{5}\left(\tilde{s}_{i}^{c}-\bar{s}\right)^{2}\right) \approx 8.75
$$

Bounds on Variance (or TVaR) - Minimum variance

Minimum in convex order

The rearrangement algorithm (RA) of Puccetti \& Rüschendorf, 2012 aims to obtain sums that are "smallest possible" (for convex order).

Idea of the RA

- Columns of M are rearranged such that they become anti-monotonic with the sum of all other columns "until convergence is reached".

$$
\forall k \in\{1,2, \ldots, n\}, X_{k} \text { antimonotonic with } \sum_{j \neq k} X_{j}
$$

- Note that after each step,
$\operatorname{var}\left(X_{k}^{a}+\sum_{j \neq k} X_{j}\right) \leqslant \operatorname{var}\left(X_{k}+\sum_{j \neq k} X_{j}\right)$ where X_{k}^{a} is antimonotonic with $\sum_{j \neq k} X_{j}$

Example: Minimum Variance

$$
M=\left[\begin{array}{lll}
3 & 4 & 1 \\
2 & 4 & 2 \\
0 & 2 & 1 \\
4 & 3 & 3 \\
3 & 2 & 2 \\
1 & 1 & 2 \\
1 & 1 & 1
\end{array}\right], \quad S_{N}^{f}=\left[\begin{array}{l}
8 \\
8 \\
3
\end{array}\right], \quad S_{N}^{u}=\left[\begin{array}{c}
10 \\
7 \\
4 \\
3 \\
1
\end{array}\right]
$$

Example: Minimum Variance

$$
M=\left[\begin{array}{lll}
3 & 4 & 1 \\
2 & 4 & 2 \\
0 & 2 & 1 \\
4 & 3 & 3 \\
3 & 2 & 2 \\
1 & 1 & 2 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad S_{N}^{f}=\left[\begin{array}{l}
8 \\
8 \\
3
\end{array}\right], \quad S_{N}^{u}=\left[\begin{array}{c}
10 \\
7 \\
4 \\
3 \\
1
\end{array}\right]
$$

For the minimum variance, construct convex smallest distribution for S_{N}^{u} (ideally constant, "joint mixability") \Rightarrow RA on U_{N}

$$
M=\left[\begin{array}{lll}
3 & 4 & 1 \\
2 & 4 & 2 \\
0 & 2 & 1 \\
1 & 1 & 3 \\
0 & 3 & 2 \\
1 & 2 & 2 \\
3 & 1 & 1 \\
4 & 0 & 1
\end{array}\right], \quad S_{N}^{f}=\left[\begin{array}{l}
8 \\
8 \\
3
\end{array}\right], \quad S_{N}^{u}=\left[\begin{array}{l}
5 \\
5 \\
5 \\
5 \\
5
\end{array}\right]
$$

The minimum variance is
$\frac{1}{8}\left(\sum_{i=1}^{3}\left(s_{i}-\bar{s}\right)^{2}+\sum_{i=1}^{5}\left(\tilde{s}_{i}^{m}-\bar{s}\right)^{2}\right) \approx 2.5$

Second Approach

Model Risk Analytical Bounds

(for variance and TVaR)

Some Notation

- Define $p_{f}:=P(\mathbb{I}=1)$ and $p_{u}:=P(\mathbb{I}=0)$ where

$$
\begin{equation*}
\mathbb{I}:=\mathbb{1}_{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathcal{F}} \tag{3}
\end{equation*}
$$

- Let $U \sim \mathcal{U}(0,1)$ independent of the event " $\left(X_{1}, X_{2}, \ldots, X_{d}\right) \in \mathcal{F}^{\prime}$ (so U is independent of \mathbb{I}).
- Define $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ by

$$
\begin{equation*}
Z_{i}=F_{X_{i} \mid\left(X_{1}, X_{2}, \ldots, X_{d}\right) \in \mathcal{U}}^{-1}(U), \quad i=1,2, \ldots, d \tag{4}
\end{equation*}
$$

- All $Z_{i}(i=1,2, \ldots, d)$ are increasing in U and thus $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ is comonotonic with known distribution.

Bounds on Variance

Theorem (Bounds on the variance of $\sum_{i=1}^{d} X_{i}$)

Let $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ that satisfies properties (i), (ii) and (iii) and let $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ and \mathbb{I} as defined before.

$$
\begin{aligned}
& \operatorname{var}\left(\mathbb{I} \sum_{i=1}^{d} X_{i}+(1-\mathbb{I}) \sum_{i=1}^{d} E\left(Z_{i}\right)\right) \leqslant \operatorname{var}\left(\sum_{i=1}^{d} X_{i}\right) \\
& \leqslant \operatorname{var}\left(\mathbb{I} \sum_{i=1}^{d} X_{i}+(1-\mathbb{I}) \sum_{i=1}^{d} Z_{i}\right)
\end{aligned}
$$

Example

- Assume $d=20$.
- (i) $\left(X_{1}, \ldots, X_{20}\right)$ is a random vector with $\mathrm{N}(0,1)$ marginals.
- (ii) $\left(X_{1}, \ldots, X_{20}\right)$ follows a multivariate standard normal distribution with correlation parameter (pairwise correlation) ρ on

$$
\mathcal{F}:=\left[q_{\beta}, q_{1-\beta}\right]^{d} \subset \mathbb{R}^{d}
$$

(for some $\beta<50 \%$) where q_{γ} is the quantile of $N(0,1)$ at level γ.

- $\beta=0 \%$: no uncertainty
- $\beta=50 \%$ full uncertainty

Numerical Results

$\mathcal{F}=\left[q_{\beta}, q_{1-\beta}\right]^{d}$	$\mathcal{U}=\emptyset$ $\beta=0 \%$	$\beta=0.05 \%$	$\beta=0.5 \%$	$\mathcal{U}=\mathbb{R}^{d}$ $\beta=50 \%$
$\rho=0$	4.47	$(4.4,5.65)$	$(3.89,10.6)$	$(0,20)$
$\rho=0.1$	7.62	$(7.41,8.26)$	$(6.23,11.7)$	$(0,20)$

- First column: standard deviation of $\sum_{i=1}^{20} X_{i}$ under the assumption of multivariate normality (no dependence uncertainty, i.e., $\mathcal{U}=\emptyset$).
- Lower and upper bounds of the standard deviation of $\sum_{i=1}^{20} X_{i}$ are reported as pairs $\left(\rho_{\mathcal{F}}^{-}, \rho_{\mathcal{F}}^{+}\right)$for various confidence levels β.
- 3,000,000 simulations: all digits reported in the table are significant.

Observations

- Impact of model risk on the standard deviation can be substantial even when the joint distribution $\left(X_{1}, \ldots, X_{d}\right)$ is almost perfectly known (β close to $0, p_{u}$ close to 0).

Observations

- Impact of model risk on the standard deviation can be substantial even when the joint distribution $\left(X_{1}, \ldots, X_{d}\right)$ is almost perfectly known (β close to $0, p_{u}$ close to 0).
$-\beta=0.05 \%$ and $\rho=0$. In this case, $p_{u}=1-0.999^{20} \approx 0.02$. Here, using a multivariate normal assumption might underestimate the standard deviation by $(5.65-4.47) / 4.47=26.4 \%$ and overestimate it by (4.47-4.4)/4.4=1.6\%.
- Thus the multivariate normality does not seem to be a prudent assumption: more likely to underestimate risk than to overestimate it.

Observations

- Impact of model risk on the standard deviation can be substantial even when the joint distribution $\left(X_{1}, \ldots, X_{d}\right)$ is almost perfectly known (β close to $0, p_{u}$ close to 0).
$-\beta=0.05 \%$ and $\rho=0$. In this case, $p_{u}=1-0.999^{20} \approx 0.02$. Here, using a multivariate normal assumption might underestimate the standard deviation by $(5.65-4.47) / 4.47=26.4 \%$ and overestimate it by (4.47-4.4)/4.4=1.6\%.
- Thus the multivariate normality does not seem to be a prudent assumption: more likely to underestimate risk than to overestimate it.
- Adding partial information on dependence (ie when $\beta<50 \%$) reduces the unconstrained bounds ($\beta=50 \%$).
- when $\beta=0.5 \%$ and $\rho=0, p_{u}=1-0.99^{20} \approx 0.18$ and the unconstrained upper bound for the standard deviation shrinks by approximately 50% (it decreases from 20 to 10.6).

Bounds on TVaR or any risk measure satisfying convex order

Theorem (Bounds on the TVaR of $\sum_{i=1}^{d} X_{i}$)

Assume ($X_{1}, X_{2}, \ldots, X_{d}$) satisfies (i), (ii) and (iii), and let $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ and \mathbb{I} as defined before.

$$
\begin{aligned}
T \operatorname{VaR}_{p}\left(\mathbb{I} \sum_{i=1}^{d} X_{i}+(1-\mathbb{I}) \sum_{i=1}^{d} E\left(Z_{i}\right)\right) \leqslant T \operatorname{VaR}_{p}\left(\sum_{i=1}^{d} X_{i}\right) \\
\leqslant T \operatorname{Va}_{p}\left(\mathbb{I} \sum_{i=1}^{d} X_{i}+(1-\mathbb{I}) \sum_{i=1}^{d} Z_{i}\right)
\end{aligned}
$$

Bounds on TVaR or any risk measure satisfying convex order

Theorem (Bounds on the TVaR of $\sum_{i=1}^{d} X_{i}$)

Assume $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ satisfies (i), (ii) and (iii), and let $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ and \mathbb{I} as defined before.

$$
\begin{aligned}
T V_{a} R_{p}\left(\mathbb{I} \sum_{i=1}^{d} X_{i}+(1-\mathbb{I}) \sum_{i=1}^{d} E\left(Z_{i}\right)\right) \leqslant T \operatorname{VaR}_{p}\left(\sum_{i=1}^{d} X_{i}\right) \\
\leqslant T \operatorname{VaR}_{p}\left(\mathbb{I} \sum_{i=1}^{d} X_{i}+(1-\mathbb{I}) \sum_{i=1}^{d} Z_{i}\right)
\end{aligned}
$$

- Same example with the standard multivariate model as benchmark.
- Conclusions are similar to the variance.

First \& Second Approach

Bounds on Value-at-Risk

Bounds on Value-at-Risk

Previous approach works for all risk measures that satisfy convex order... But not for Value-at-Risk(S)

- to maximize VaR_{p}, the idea is to change the comonotonic dependence of Z_{i} such that the sum is constant beyond the (comonotonic) VaR level
- to minimize VaR_{p}, the idea is to change the comonotonic dependence of Z_{i} such that the sum is constant in the left tail, below the (comonotonic) VaR level (or lowest variance)

$\mathrm{VVRR}_{\mathrm{p}}\left(\mathrm{S}^{c}\right)$

Unconstrained Bounds with $X_{j} \sim F_{j}$

$$
A=L T V a R_{q}\left(S^{c}\right) \leqslant \operatorname{VaR}_{q}\left[X_{1}+X_{2}+\ldots+X_{n}\right] \leqslant B=T V_{a} R_{q}\left(S^{c}\right)
$$

Bounds on VaR

Theorem (Constrained VaR Bounds for $\sum_{i=1}^{d} X_{i}$)

Assume $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ satisfies properties (i), (ii) and (iii), and let $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right), U$ and \mathbb{I} as defined before. Define the variables L_{i} and H_{i} as

$$
L_{i}=L T V_{a} R_{U}\left(Z_{i}\right) \text { and } H_{i}=T V_{a} R_{U}\left(Z_{i}\right)
$$

and let

$$
\begin{aligned}
& m_{p}:=\operatorname{VaR}_{p}\left(\mathbb{I} \sum_{i=1}^{d} X_{i}+(1-\mathbb{I}) \sum_{i=1}^{d} L_{i}\right) \\
& M_{p}:=\operatorname{VaR}_{p}\left(\mathbb{I} \sum_{i=1}^{d} X_{i}+(1-\mathbb{I}) \sum_{i=1}^{d} H_{i}\right)
\end{aligned}
$$

Bounds on the Value-at-Risk are $m_{p} \leqslant V_{a} R_{p}\left(\sum_{i=1}^{d} X_{i}\right) \leqslant M_{p}$.

Value-at-Risk of a Mixture

Lemma

Consider a sum $S=\mathbb{I} X+(1-\mathbb{I}) Y$, where \mathbb{I} is a Bernoulli distributed random variable with parameter p_{f} and where the components X and Y are independent of \mathbb{I}. Define $\alpha_{*} \in[0,1]$ by

$$
\alpha_{*}:=\inf \left\{\alpha \in(0,1) \left\lvert\, \exists \beta \in(0,1)\left\{\begin{array}{l}
p_{f} \alpha+\left(1-p_{f}\right) \beta=p \\
\operatorname{VaR}_{\alpha}(X) \geqslant \operatorname{VaR}_{\beta}(Y)
\end{array}\right\}\right.\right.
$$

and let $\beta_{*}=\frac{p-p_{f} \alpha_{*}}{1-p_{f}} \in[0,1]$. Then, for $p \in(0,1)$,

$$
\operatorname{Va}_{p}(S)=\max \left\{\operatorname{Va}_{\alpha_{*}}(X), \operatorname{Va}_{\beta_{*}}(Y)\right\}
$$

Applying this lemma, one can prove a more convenient expression to compute the VaR bounds.

Let us define $T:=F_{\sum_{i} x_{i} \mid\left(X_{1}, X_{2}, \ldots, X_{d}\right) \in \mathcal{F}}^{-1}(U)$.

Theorem (Alternative formulation of the upper bound for VaR)

Assume $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ satisfies properties (i), (ii) and (iii), and let $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ and \mathbb{I} as defined before.
With $\alpha_{1}=\max \left\{0, \frac{p+p_{f}-1}{p_{f}}\right\}$ and $\alpha_{2}=\min \left\{1, \frac{p}{p_{f}}\right\}$,
$\alpha_{*}:=\inf \left\{\alpha \in\left(\alpha_{1}, \alpha_{2}\right) \left\lvert\, \operatorname{VaR}_{\alpha}(T) \geqslant T \operatorname{VaR}_{\frac{p-p_{f} \alpha}{}}^{1-p_{f}}\left(\sum_{i=1}^{d} Z_{i}\right)\right.\right\}$
When $\frac{p+p_{f}-1}{p_{f}}<\alpha_{*}<\frac{p}{p_{f}}$,

$$
M_{p}=T V_{V} \frac{R_{p-p_{f} \alpha_{*}}^{1-p_{f}}}{}\left(\sum_{i=1}^{d} Z_{i}\right)
$$

The lower bound m_{p} is obtained by replacing "TVaR" by "LTVaR".

Numerical Results, $\mathcal{F}=\left[q_{\beta}, q_{1-\beta}\right]^{d}, \quad \rho=0.1$

	$\mathcal{U}=\emptyset$			$\mathcal{U}=\mathbb{R}^{d}$
	$\beta=0 \%$	$\beta=0.05 \%$	$\beta=0.5 \%$	$\beta=0.5$
$p=95 \%$	12.5	$(12.2,13.3)$	$(10.7,27.7)$	$(-2.17,41.3)$
$p=99.95 \%$	25.1	$(24.2,71.1)$	$(21.5,71.1)$	$(-0.035,71.1)$

- $\mathcal{U}=\emptyset$: No uncertainty (multivariate standard normal model).
- 3,000, 000 simulations: all digits reported are significant.

Numerical Results, $\quad \mathcal{F}=\left[q_{\beta}, q_{1-\beta}\right]^{d}, \quad \rho=0.1$

	$\mathcal{U}=\emptyset$			$\mathcal{U}=\mathbb{R}^{d}$
	$\beta=0 \%$	$\beta=0.05 \%$	$\beta=0.5 \%$	$\beta=0.5$
$p=95 \%$	12.5	$(12.2,13.3)$	$(10.7,27.7)$	$(-2.17,41.3)$
$p=99.95 \%$	25.1	$(24.2,71.1)$	$(21.5,71.1)$	$(-0.035,71.1)$

- $\mathcal{U}=\emptyset$: No uncertainty (multivariate standard normal model).
- 3,000,000 simulations: all digits reported are significant.
- The risk for an underestimation of VaR is increasing in the probability level used to assess the VaR.
- When very high probability levels are used in the VaR calculations ($p=99.95 \%$), the constrained bounds are very close to the unconstrained bounds even when there is almost no uncertainty on the dependence ($\beta=0.05 \%$).
- So despite all the added information on dependence, the bounds are still wide!

With Pareto risks

Consider $d=20$ risks distributed as Pareto with parameter $\theta=3$.

- Assume we trust the independence conditional on being in \mathcal{F}_{1}

$$
\mathcal{F}_{1}=\bigcap_{k=1}^{d}\left\{q_{\beta} \leqslant X_{k} \leqslant q_{1-\beta}\right\}
$$

where $q_{\beta}=(1-\beta)^{-1 / \theta}-1$.

\mathcal{F}_{1}	$\mathcal{U}=\emptyset$			$\mathcal{U}=\mathbb{R}^{d}$
$\beta=0 \%$	$\beta=0.05 \%$	$\beta=0.5 \%$	$\beta=0.5$	
$\alpha=95 \%$	16.6	$(16,18.4)$	$(13.8,37.4)$	$(7.29,61.4)$
$\alpha=99.95 \%$	43.5	$(26.5,359)$	$(20.5,359)$	$(9.83,359)$

Incorporating Expert's Judgements

Consider $d=20$ risks distributed as Pareto $\theta=3$.

- Assume comonotonicity conditional on being in \mathcal{F}_{2}

$$
\mathcal{F}_{2}=\bigcup_{k=1}^{d}\left\{X_{k}>q_{p}\right\}
$$

Comonotonic estimates of Value-at-Risk $\operatorname{Va} R_{95 \%}\left(S^{c}\right)=34.29, V_{a} R_{99.95 \%}\left(S^{c}\right)=231.98$

\mathcal{F}_{2}	$\mathcal{U}=\emptyset$ $($ Model $)$	$p=99.5 \%$	$p=99.9 \%$	$p=99.95 \%$
$\alpha=95 \%$	16.6	$(8.35,50)$	$(7.47,56.7)$	$(7.38,58.3)$
$\alpha=99.95 \%$	43.5	$(232,232)$	$(232,232)$	$(180,232)$

Comparison

 Independence within a rectangle $\mathcal{F}_{1}=\bigcap_{k=1}^{d}\left\{q_{\beta} \leqslant X_{k} \leqslant q_{1-\beta}\right\}$| | \mathcal{U} | | | |
| :---: | :---: | :---: | :---: | :---: |
| \mathcal{F}_{1} | $\beta=0 \%$ | $\beta=0.05 \%$ | $\beta=0.5 \%$ | $\mathcal{U}=\mathbb{R}^{d}$ |
| $\beta=0.5$ | | | | |
| $\alpha=95 \%$ | 16.6 | $(16,18.4)$ | $(13.8,37.4)$ | $(7.29,61.4)$ |
| $\alpha=99.95 \%$ | 43.5 | $(26.5,359)$ | $(20.5,359)$ | $(9.83,359)$ |

Comonotonicity when one of the risks is large $\mathcal{F}_{2}=\bigcup_{k=1}^{d}\left\{X_{k}>q_{p}\right\}$

\mathcal{F}_{2}	$\mathcal{U}=\emptyset$ $($ Model $)$	$p=99.5 \%$	$p=99.9 \%$	$p=99.95 \%$
$\alpha=95 \%$	16.6	$(8.35,50)$	$(7.47,56.7)$	$(7.38,58.3)$
$\alpha=99.95 \%$	43.5	$(232,232)$	$(232,232)$	$(180,232)$

Algorithm to approximate sharp bounds

- A detailed algorithm to approximate sharp bounds is given in the paper.
- An application to a portfolio of stocks using market data is also fully developed.

Algorithm to approximate sharp bounds

- From the lemma, the VaR of a mixture is obtained as the maximum of two VaRs.
- At the upper bound, this VaR becomes a TVaR (proposition).
- Compute α_{*} and find a dependence in the vector $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ such that

$$
\begin{equation*}
\operatorname{VaR}_{\beta_{*}}\left(\sum_{i=1}^{d} Z_{i}\right)=\operatorname{TVaR}_{\beta_{*}}\left(\sum_{i=1}^{d} Z_{i}\right) \tag{5}
\end{equation*}
$$

where $\beta_{*}=\frac{p-p_{f} \alpha_{*}}{1-p_{f}}$

- This is the spirit of the algorithm... where we find the number of rows to take in the untrusted matrix to apply the RA.

Conclusions

- Assess model risk with partial information and given marginals (by Monte Carlo from the fitted distribution or non-parametrically)
- We provide several ways to choose the trusted area \mathcal{F} : d-cube or contours of a multivariate density fitted to data. Open question: how to optimally do so?
- N too small but one believes in fitted marginals then improve the efficiency of the algorithm by re-discretizing using the fitted marginal \hat{f}_{i}.
- Possible to amplify the tails of the marginals if one does not trust the marginals, e.g., apply a distortion to amplify the tails when re-discretizing.
- Additional information on dependence can be incorporated
- variance of the sum (WP with Rüschendorf,Vanduffel)
- higher moments (WP with Denuit, Vanduffel)

References

- Bernard, C., X. Jiang, and R. Wang (2014): "Risk Aggregation with Dependence Uncertainty," Insurance: Mathematics and Economics.
- Bernard, C., Y. Liu, N. MacGillivray, and J. Zhang (2013): "Bounds on Capital Requirements For Bivariate Risk with Given Marginals and Partial Information on the Dependence," Dependence Modelling.
- Bernard, C., L. Rüschendorf, and S. Vanduffel (2013): "VaR Bounds with a Variance Constraint," Working Paper.
- Embrechts, P., G. Puccetti, and L. Rüschendorf (2013): "Model uncertainty and VaR aggregation," Journal of Banking \& Finance.
- Puccetti, G., and L. Rüschendorf (2012): "Computation of sharp bounds on the distribution of a function of dependent risks," Journal of Computational and Applied Mathematics, 236(7), 1833-1840.
- Tankov, P., 2011. "Improved Fréchet bounds and model-free pricing of multi-asset options," Journal of Applied Probability.
- Wang, B., and R. Wang (2011): "The complete mixability and convex minimization problems with monotone marginal densities," Journal of Multivariate Analysis, 102(10), 1344-1360.
- Wang, B., and R. Wang (2014): "Joint Mixability," Working paper.

