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Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions

Risk Aggregation and Diversification

• A key issue in capital adequacy and solvency is to aggregate
risks (by summing capital requirements?) and potentially
account for diversification (to reduce the total capital?)

• Using the standard deviation to measure the risk of
aggregating X1 and X2 with standard deviation σ1 and σ2,

std(X1 + X2) =
√
σ21 + σ22 + 2ρσ1σ2

If ρ < 1, there are “diversification benefits”: aggregating
reduces the risk (subadditivity property).

• This is not the case for instance for Value-at-Risk.
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Risk Aggregation and Diversification

• Basel II, Solvency II, Swiss Solvency Test, US Risk Based
Capital, Canadian Minimum Continuing Capital and Surplus
Requirements (MCCSR): all recognize partially the benefits of
diversification and aggregating risks may decrease the overall
capital.

• But they also recognize the difficulty to find an adequate
model to aggregate risks.

I Var-covar approach based on a correlation matrix: correlation
is a poor measure of dependence, issue with micro-correlation,
correlation 0 does not mean independence, problem of tail
dependence, correlation is a measure of linear dependence.

I Copula approach, vine models... : very flexible but prone to
model risk

I Scenario based approach, including identifying common risk
factors and incorporate what you know in the model.
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Objectives and Findings

• Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d individual dependent risks.

I Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of the portfolio?

• Analytical expressions for these maximum and minimum

• A non-parametric method based on the data at hand.

• Implications:

I Current regulation is subject to very high model risk, even if
one knows the multivariate distribution almost completely.

I Able to quantify model risk for a chosen risk measure. We can
identify for which risk measures it is meaningful to develop
accurate multivariate models.
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Model Risk

1 Goal: Assess the risk of a portfolio sum S =
∑d

i=1 Xi .

2 Choose a risk measure ρ(·), fit a multivariate distribution for
(X1,X2, ...,Xd) and compute ρ(S)

3 How about model risk? How wrong can we be?
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Choice of the risk measure

• Variance of X

• Value-at-Risk of X at level p ∈ (0, 1)

VaRp (X ) = F−1X (p) = inf {x ∈ R | FX (x) > p} (1)

• Tail Value-at-Risk or Expected Shortfall of X

TVaRp(X ) =
1

1− p

∫ 1

p
VaRu(X )du p ∈ (0, 1)

and p → TVaRp is continuous.

• Left Tail Value-at-Risk of X

LTVaRp(X ) =
1

p

∫ p

0
VaRu(X )du
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Assessing Model Risk on Dependence with d = 2 Risks

definition: Convex order

X is smaller in convex order, X ≺cx Y , if for all convex functions f

E [f (X )] 6 E [f (Y )]

Assume first that we trust the marginals Xi ∼ Fi but that we have
no trust about the dependence structure between the Xi (copula).

In two dimensions, assessing model risk on ρ(S) is linked to the
Fréchet-Hoeffding bounds or “extreme dependence”.

F−11 (U) + F−12 (1− U) ≺cx X1 + X2 ≺cx F−11 (U) + F−12 (U)

I For risk measures preserving convex order (ρ(S) = var(S),
ρ(S) = TVaR(S)), for U ∼ U(0, 1)

ρ
(
F−11 (U) + F−12 (1− U)

)
6 ρ(S) 6 ρ

(
F−11 (U) + F−12 (U)

)

This does not apply to Value-at-Risk.
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Assessing Model Risk on Dependence with d > 3 Risks

I The Fréchet upper bound corresponds to the comonotonic
scenario:

X1 + X2 + ...+ Xd ≺cx F−11 (U) + F−12 (U) + ...+ F−1d (U)

I In d > 3 dims, the Fréchet lower bound does not exist: It
depends on F1, F2,..., Fd . See Wang and Wang (2011, 2014).

I In d dimensions

• Puccetti and Rüschendorf (2012, JCAM): algorithm (RA) to
approximate bounds on functionals.

• Embrechts, Puccetti, Rüschendorf (2013, JBF): application of
the RA to find bounds on VaR

• Bernard, Jiang, Wang (2014, IME): explicit form of the lower
bound for convex risk measures of an homogeneous sum.

I Issues
• bounds are generally very wide
• ignore all information on dependence.
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Incorporating Partial Information on Dependence

• With d = 2:
• subset of bivariate distribution with given measure of

association Nelsen et al. (2001 Commun. Stat Theory
Methods, 2004, JMVA)

• bounds for bivariate distribution functions when there are
constraints on the values of its quartiles (Nelsen et al. (2004)).

• 2-dim copula known on a subset of [0, 1]2 ⇒ find “improved
Fréchet bounds”, Tankov (2011, JAP), Bernard et al. (2012,
JAP) and Sadooghi-Alvandi et al. (2013, Commun. Stat.
Theory Methods).

• With d > 3: Bounds on the VaR of the sum

- with known bivariate distributions: Embrechts, Puccetti and
Rüschendorf (2013)

- with the variance of the sum (WP with Rüschendorf,Vanduffel)
- with higher moments (WP with Denuit, Vanduffel)
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Our assumptions

Let (X1,X2, ...,Xd) be some random vector of interest. Let
F ⊂ Rd (“trusted” or “fixed” area) and U =Rd\F (“untrusted”
area). We assume that we know

(i) the marginal distribution Fi of Xi on R for i = 1, 2, ..., d ,

(ii) the distribution of (X1,X2, ...,Xd) | {(X1,X2, ...,Xd) ∈ F}.
(iii) P ((X1,X2, ...,Xd) ∈ F)

I The joint distribution of (X1,X2, ...,Xd) is thus completely
specified if F =Rd and U = ∅.

I When only marginals are known: U = Rd and F = ∅.
I Our Goal: Find bounds on ρ(S) := ρ(X1 + ...+ Xd) when

(X1, ...,Xd) satisfy (i), (ii) and (iii).
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Illustration with marginals N(0,1)
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Illustration with marginals N(0,1)
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F1 =
2⋂

k=1

{qβ 6 Xk 6 q1−β}
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Illustration with marginals N(0,1)

F1 =
2⋂

k=1

{qβ 6 Xk 6 q1−β} F =
2⋃

k=1

{Xk > qp}
⋃
F1
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Illustration with marginals N(0,1)

F1 =contour of MVN at β F =
2⋃

k=1

{Xk > qp}
⋃
F1
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Model Risk

Assume (X1,X2, ...,Xd) satisfies (i), (ii) and (iii) and use a risk
measure ρ(·). Define

ρ+F := sup

{
ρ

(
d∑

i=1

Yi

)}
, ρ−F := inf

{
ρ

(
d∑

i=1

Yi

)}

where the supremum and the infimum are taken over all other
(joint distributions of) random vectors (Y1,Y2, ...,Yd) that agree
with (i), (ii) and (iii).

“Model risk of underestimation” of ρ(
∑

Xi ) in some chosen
benchmark model:

ρ+F − ρ(
∑n

i=1 Xi )

ρ+F
“Model risk of overestimation” of ρ(

∑
Xi ):

ρ(
∑n

i=1 Xi )− ρ−F
ρ−F

Carole Bernard Assessing Model Risk in High Dimensions 15



Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions

Model Risk

Assume (X1,X2, ...,Xd) satisfies (i), (ii) and (iii) and use a risk
measure ρ(·). Define

ρ+F := sup

{
ρ

(
d∑

i=1

Yi

)}
, ρ−F := inf

{
ρ

(
d∑

i=1

Yi

)}

where the supremum and the infimum are taken over all other
(joint distributions of) random vectors (Y1,Y2, ...,Yd) that agree
with (i), (ii) and (iii).
“Model risk of underestimation” of ρ(

∑
Xi ) in some chosen

benchmark model:
ρ+F − ρ(

∑n
i=1 Xi )

ρ+F
“Model risk of overestimation” of ρ(

∑
Xi ):

ρ(
∑n

i=1 Xi )− ρ−F
ρ−F

Carole Bernard Assessing Model Risk in High Dimensions 15



Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions

Technical Contributions

1 The first approach is practical: an algorithm to approximate

the sharp bounds ρ−F and ρ+F performed directly using the
data at hand (without fitting a model): model risk can be
assessed in a fully non-parametric way: Use of the
rearrangement algorithm of Puccetti and Rüschendorf (2012)
and Embrechts et al. (2013).

2 The second approach provides theoretical bounds, which can
be directly computed within a model (Monte Carlo) but may
not be sharp.
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First Approach

Approximation of Bounds

(for variance and TVaR)

Carole Bernard Assessing Model Risk in High Dimensions 17
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Non-parametric Approach

• N observations of the d-dimensional vector (xi1, xi2, ..., xid)
for i = 1, ...,N. The corresponding N × d matrix:

M = (xij)i ,j

• Each observation (xi1, xi2, ..., xid) occurs with probability 1
N

naturally (possibly involving repetitions).

• M contains enough data for an accurate description of the
marginal distributions of Xk (k = 1, 2, ..., d)

• Define SN by SN(i) =
∑d

k=1 xik for (i = 1, 2, ...,N). SN can
be seen as a random variable that takes the value SN(i) in
“state” i for i = 1, 2, ...,N.

Goal: Find (sharp) bounds on the risk measure applied to SN .

Carole Bernard Assessing Model Risk in High Dimensions 18
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Example of M:

N = 8 observations, d = 3 dimensions
and 3 observations trusted (`f = 3, pf = 3/8)

as trustworthy than the initial one (note indeed that we do not know the dependence be-
tween the Xi, conditionally on (X1, X2, ..., Xd) ∈ U). Without loss of generality, we can
thus always assume that the matrix UN depicts a comonotonic dependence (in each column,
the values are sorted in decreasing order, that is such that xm1k � xm2k � ... � xm�uk

for all k = 1, 2, ..., d). Finally, for FN (and thus also for the corresponding part of XN )
we can assume that the �f observations (xij1, xij2...xijd) appear in such a way that for the
sums of the components, ie, sj := xij1 + xij2 + ... + xijd ( j = 1, 2, ..., �f) it holds that
s1 �s2 �...� s�f .

From now on, without any loss of generality, the observed data points are reported in
the following matrix M

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi11 xi12 ... xi1d

xi21 xi22 ... xi2d

...
...

...
...

xi�f 1 xi�f 2 ... xi�f d

xm11 xm12 ... xm1d

xm21 xm22 ... xm2d

...
...

...
...

xm�u1 xm�u2 ... xm�ud

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where the grey area reflects FN and the white area reflects UN . The corresponding vec-
tors Sf

N and Su
N consisting of sums of the components for each observation in the trusted

(respectively untrusted) part:

[
Sf
N

Su
N

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
...

s�f
s̃1 := xm11 + xm12 + ...+ xm1d

s̃2 := xm21 + xm22 + ...+ xm2d

...
s̃�u := xm�u1 + xm�u2 + ...+ xm�ud

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

While s1 �s2 �...� s�f are trusted, the sums s̃i change when varying the choice of depen-
dence in UN . In fact, the set {i1, ..., i�f } can be seen as the collection of states (scenarios)
in which the corresponding observations are trusted whereas the set {m1, ...,m�u} provides
the states in which there is doubt on the dependence structure.

We now provide a simple example of this setup for pedagogical purpose. It will be used
throughout the paper to illustrate each algorithm that we propose. This toy example is not
meant to represent a realistic set of observations as in true applications, there is a large
number of observations (here N = 8) and possibly a large number of variables (here d = 3).
The 8 observations are given as follows with 3 observations trusted (�f = 3), which appear
in the grey area of the matrix.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
1 1 1
0 3 2
0 2 1
2 4 2
3 0 1
1 1 2
4 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
3
5
3
8
4
4
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

15
Carole Bernard Assessing Model Risk in High Dimensions 19



Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions

• The matrix M is split into two parts: FN : trusted
observations, UN : “untrusted” part.

• Rearranging the values xik (i = 1, 2, ...,N) within the k−th
column does not affect the marginal distribution Xk but only
changes the observed dependence.

• `f : number of elements in FN , `u : number of elements in UN

N = `f + `u.

• M has `f grey rows and `u white rows.

• S f
N and Su

N consist of sums in FN and UN .

Carole Bernard Assessing Model Risk in High Dimensions 20
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Example: N = 8, d = 3 with 3 observations trusted (`f = 3)
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where the grey area reflects FN and the white area reflects UN . The corresponding vec-
tors Sf

N and Su
N consisting of sums of the components for each observation in the trusted

(respectively untrusted) part:

[
Sf
N

Su
N

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
...

s�f
s̃1 := xm11 + xm12 + ...+ xm1d

s̃2 := xm21 + xm22 + ...+ xm2d

...
s̃�u := xm�u1 + xm�u2 + ...+ xm�ud

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

While s1 �s2 �...� s�f are trusted, the sums s̃i change when varying the choice of depen-
dence in UN . In fact, the set {i1, ..., i�f } can be seen as the collection of states (scenarios)
in which the corresponding observations are trusted whereas the set {m1, ...,m�u} provides
the states in which there is doubt on the dependence structure.

We now provide a simple example of this setup for pedagogical purpose. It will be used
throughout the paper to illustrate each algorithm that we propose. This toy example is not
meant to represent a realistic set of observations as in true applications, there is a large
number of observations (here N = 8) and possibly a large number of variables (here d = 3).
The 8 observations are given as follows with 3 observations trusted (�f = 3), which appear
in the grey area of the matrix.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
1 1 1
0 3 2
0 2 1
2 4 2
3 0 1
1 1 2
4 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
3
5
3
8
4
4
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

15

Without loss of generality we can then consider for further analysis the following matrix
M and the vectors of sums Sf

N and Su
N as follows.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
4 3 3
3 2 2
1 1 2
1 1 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

10
7
4
3
1

⎤
⎥⎥⎥⎥⎦

(19)

Finally, with some abuse of notation (completing by 0 so that Sf
N and Su

N take 8 values)
one also has the following representation of SN ,

SN = ISf
N + (1− I)Su

N (20)

where I =1 if if (xi1, xi2...xid) ∈ FN (i = 1, 2, ..., N). In fact, Sf
N can be readily seen as the

sampled counterpart of the T that we used before (see Definition 4 and Proposition 2.9)

whereas Su
N is a comonotonic sum and corresponds to the sampled version of

∑d
i=1 Zi. In

this paper, we aim at finding worst case dependences allowing for a robust risk assessment
of the portfolio sum S (SN ). This amounts to rearranging the outcomes in the columns of
the untrusted part UN such that the risk measure at hand for SN becomes maximized (resp.
minimized).

3.3 Bounds on standard deviation

From Proposition 2.2 it is clear that in order to maximize the variance of SN one needs a
comonotonic scenario on UN . However, we have initialized a comonotonic structure already
(without loss of generality) and the corresponding values of the sums are exactly the values
s̃i (i = 1, 2, ..., �u) reported for Su

N in (17)). The upper bound on variance is then computed
as

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃i − s̄)2

⎞
⎠ (21)

where the average sum s̄ is given by

s̄ =
1

N

N∑

i=1

d∑

j=1

xij =
1

N

⎛
⎝

�f∑

i=1

si +

�u∑

i=1

s̃i

⎞
⎠ (22)

To achieve the minimum variance bound found in Proposition 2.2, the values of Su
N must be

as close as possible to each other, ideally Su
N must be constant. In this respect the concept

of complete mixability appears as a theoretical device. “Complete mixability” refers to
the dependence structure which makes the sum Su

N constant (Wang and Wang (2011)).
To do so, in practice, we apply the rearrangement algorithm of Embrechts, Puccetti, and
Rüschendorf (2013) on the matrix UN (untrusted part) to be as close as possible to the
complete mixability condition. For completeness, the algorithm is presented in Appendix B
of this paper. Denote by s̃mi the corresponding values of the sums of Su

N after applying the
RA. We then compute the minimum variance as follows

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃mi − s̄)2

⎞
⎠ (23)

16
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Bounds on Variance (or TVaR) - Maximum variance

Maximum in convex order:

upper Fréchet bound, comonotonic scenario

• To maximize the variance of SN : comonotonic scenario on
UN , and the corresponding values of the sums are exactly the
values s̃i (i = 1, 2, ..., `u) in Su

N .

• The upper bound on variance is then computed as

1

N

(
`f∑

i=1

(si − s̄)2 +
`u∑

i=1

(s̃i − s̄)2

)
(2)

where the average sum s̄ = 1
N

∑N
i=1

∑d
j=1 xij
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Example: Maximum Variance

With the matrix M of observations

Without loss of generality we can then consider for further analysis the following matrix
M and the vectors of sums Sf

N and Su
N as follows.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
4 3 3
3 2 2
1 1 2
1 1 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

10
7
4
3
1

⎤
⎥⎥⎥⎥⎦

(19)

Finally, with some abuse of notation (completing by 0 so that Sf
N and Su

N take 8 values)
one also has the following representation of SN ,

SN = ISf
N + (1− I)Su

N (20)

where I =1 if if (xi1, xi2...xid) ∈ FN (i = 1, 2, ..., N). In fact, Sf
N can be readily seen as the

sampled counterpart of the T that we used before (see Definition 4 and Proposition 2.9)

whereas Su
N is a comonotonic sum and corresponds to the sampled version of

∑d
i=1 Zi. In

this paper, we aim at finding worst case dependences allowing for a robust risk assessment
of the portfolio sum S (SN ). This amounts to rearranging the outcomes in the columns of
the untrusted part UN such that the risk measure at hand for SN becomes maximized (resp.
minimized).

3.3 Bounds on standard deviation

From Proposition 2.2 it is clear that in order to maximize the variance of SN one needs a
comonotonic scenario on UN . However, we have initialized a comonotonic structure already
(without loss of generality) and the corresponding values of the sums are exactly the values
s̃i (i = 1, 2, ..., �u) reported for Su

N in (17)). The upper bound on variance is then computed
as

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃i − s̄)2

⎞
⎠ (21)

where the average sum s̄ is given by

s̄ =
1

N

N∑

i=1

d∑

j=1

xij =
1

N

⎛
⎝

�f∑

i=1

si +

�u∑

i=1

s̃i

⎞
⎠ (22)

To achieve the minimum variance bound found in Proposition 2.2, the values of Su
N must be

as close as possible to each other, ideally Su
N must be constant. In this respect the concept

of complete mixability appears as a theoretical device. “Complete mixability” refers to
the dependence structure which makes the sum Su

N constant (Wang and Wang (2011)).
To do so, in practice, we apply the rearrangement algorithm of Embrechts, Puccetti, and
Rüschendorf (2013) on the matrix UN (untrusted part) to be as close as possible to the
complete mixability condition. For completeness, the algorithm is presented in Appendix B
of this paper. Denote by s̃mi the corresponding values of the sums of Su

N after applying the
RA. We then compute the minimum variance as follows

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃mi − s̄)2

⎞
⎠ (23)

16

The average sum is s̄ = 5.5. The maximum variance is equal to

1

8

(
3∑

i=1

(si − s̄)2 +
5∑

i=1

(s̃ci − s̄)2

)
≈ 8.75
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Bounds on Variance (or TVaR) - Minimum variance

Minimum in convex order

The rearrangement algorithm (RA) of Puccetti & Rüschendorf,
2012 aims to obtain sums that are “smallest possible” (for convex
order).

Idea of the RA

I Columns of M are rearranged such that they become
anti-monotonic with the sum of all other columns “until
convergence is reached”.

∀k ∈ {1, 2, ..., n},Xk antimonotonic with
∑

j 6=k

Xj

I Note that after each step,

var
(

X a
k +

∑
j 6=k Xj

)
6 var

(
Xk +

∑
j 6=k Xj

)
where X a

k is

antimonotonic with
∑

j 6=k Xj

Carole Bernard Assessing Model Risk in High Dimensions 24



Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions

Example: Minimum VarianceWithout loss of generality we can then consider for further analysis the following matrix
M and the vectors of sums Sf

N and Su
N as follows.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
4 3 3
3 2 2
1 1 2
1 1 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

10
7
4
3
1

⎤
⎥⎥⎥⎥⎦

(19)

Finally, with some abuse of notation (completing by 0 so that Sf
N and Su

N take 8 values)
one also has the following representation of SN ,

SN = ISf
N + (1− I)Su

N (20)

where I =1 if if (xi1, xi2...xid) ∈ FN (i = 1, 2, ..., N). In fact, Sf
N can be readily seen as the

sampled counterpart of the T that we used before (see Definition 4 and Proposition 2.9)

whereas Su
N is a comonotonic sum and corresponds to the sampled version of

∑d
i=1 Zi. In

this paper, we aim at finding worst case dependences allowing for a robust risk assessment
of the portfolio sum S (SN ). This amounts to rearranging the outcomes in the columns of
the untrusted part UN such that the risk measure at hand for SN becomes maximized (resp.
minimized).

3.3 Bounds on standard deviation

From Proposition 2.2 it is clear that in order to maximize the variance of SN one needs a
comonotonic scenario on UN . However, we have initialized a comonotonic structure already
(without loss of generality) and the corresponding values of the sums are exactly the values
s̃i (i = 1, 2, ..., �u) reported for Su

N in (17)). The upper bound on variance is then computed
as

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃i − s̄)2

⎞
⎠ (21)

where the average sum s̄ is given by

s̄ =
1

N

N∑

i=1

d∑

j=1

xij =
1

N

⎛
⎝

�f∑

i=1

si +

�u∑

i=1

s̃i

⎞
⎠ (22)

To achieve the minimum variance bound found in Proposition 2.2, the values of Su
N must be

as close as possible to each other, ideally Su
N must be constant. In this respect the concept

of complete mixability appears as a theoretical device. “Complete mixability” refers to
the dependence structure which makes the sum Su

N constant (Wang and Wang (2011)).
To do so, in practice, we apply the rearrangement algorithm of Embrechts, Puccetti, and
Rüschendorf (2013) on the matrix UN (untrusted part) to be as close as possible to the
complete mixability condition. For completeness, the algorithm is presented in Appendix B
of this paper. Denote by s̃mi the corresponding values of the sums of Su

N after applying the
RA. We then compute the minimum variance as follows

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃mi − s̄)2

⎞
⎠ (23)

16

For the minimum variance, construct convex smallest distribution
for Su

N (ideally constant, “joint mixability”) ⇒ RA on UN

where s̄ is computed as in (22).

We illustrate the upper and lower bounds (21) and (23) for the variance derived above
with the matrix M of observations given in (19). We then use the comonotonic structure

for the untrusted part of the matrix M and compute the vectors of sums Sf
N and Su

N as
defined above in (19). The average sum is s̄ = 5.5. The maximum variance is equal to

1

8

(
3∑

i=1

(si − s̄)2 +

5∑

i=1

(s̃ci − s̄)2

)
≈ 8.75

For the lower bound, we apply the RA on UN and we obtain

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
1 1 3
0 3 2
1 2 2
3 1 1
4 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

5
5
5
5
5

⎤
⎥⎥⎥⎥⎦

(24)

With an average sum s̄ = 5.5, the minimum variance can be calculated as

1

8

(
3∑

i=1

(si − s̄)2 +

5∑

i=1

(s̃mi − s̄)2

)
≈ 2.5

3.4 Bounds on TVaR

Assume that we want the TVaR at probability level p so that for ease of exposition

k := N(1− p) (25)

where k is integer. Similarly to the case of maximizing the variance it follows from Proposi-
tion 2.4, that in order to obtain the maximum TVaR one needs a comonotonic scenario on
UN . Hence, we just need to select the k highest values from Sf

N and Su
N as computed in (17).

Let us label these values by s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order) and we can then easily

compute the maximum TVaR at probability level p. Also the minimum TVaR is obtained
similarly as the minimum variance. First apply the RA on the untrusted part UN to get
the variance on the (new) sum Su

N as small as possible. Then select the k highest values

out of Sf
N and Su

N , say: s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order) and compute the minimum

TVaR.

Let us consider the previous example again. Let us choose p = 5/8, so that k = 3.
The highest k = 3 values are 8, 8 and 10 and the maximum TVaR is then 26/3 (≈ 8.67).
After application of the RA we obtain (24) for Su

N and thus the highest 3 outcomes that we

observe for Su
N and Sf

N are 8, 8 and 5. Hence, the minimum TVaR is 21/3 = 7.

3.5 Bounds on VaR

To compute the maximum VaR, we present an algorithm that can be applied directly on the
matrix M of the observed data, and thus leads to non-parametric bounds on VaR. Recall
that the first �f rows of the matrix M correspond to FN whereas �u denotes the number

of rows of UN (N = �f + �u). In the algorithm, we also make use of Sf
N and Su

N that we
consider as random variables. To compute the VaR at probability level p, we define

k := N(1− p) (26)

17

The minimum variance is
1
8

(∑3
i=1(si − s̄)2 +

∑5
i=1(s̃mi − s̄)2

)
≈ 2.5
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Example: Minimum VarianceWithout loss of generality we can then consider for further analysis the following matrix
M and the vectors of sums Sf

N and Su
N as follows.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
4 3 3
3 2 2
1 1 2
1 1 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

10
7
4
3
1

⎤
⎥⎥⎥⎥⎦

(19)

Finally, with some abuse of notation (completing by 0 so that Sf
N and Su

N take 8 values)
one also has the following representation of SN ,

SN = ISf
N + (1− I)Su

N (20)

where I =1 if if (xi1, xi2...xid) ∈ FN (i = 1, 2, ..., N). In fact, Sf
N can be readily seen as the

sampled counterpart of the T that we used before (see Definition 4 and Proposition 2.9)

whereas Su
N is a comonotonic sum and corresponds to the sampled version of

∑d
i=1 Zi. In

this paper, we aim at finding worst case dependences allowing for a robust risk assessment
of the portfolio sum S (SN ). This amounts to rearranging the outcomes in the columns of
the untrusted part UN such that the risk measure at hand for SN becomes maximized (resp.
minimized).

3.3 Bounds on standard deviation

From Proposition 2.2 it is clear that in order to maximize the variance of SN one needs a
comonotonic scenario on UN . However, we have initialized a comonotonic structure already
(without loss of generality) and the corresponding values of the sums are exactly the values
s̃i (i = 1, 2, ..., �u) reported for Su

N in (17)). The upper bound on variance is then computed
as

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃i − s̄)2

⎞
⎠ (21)

where the average sum s̄ is given by

s̄ =
1

N

N∑

i=1

d∑

j=1

xij =
1

N

⎛
⎝

�f∑

i=1

si +

�u∑

i=1

s̃i

⎞
⎠ (22)

To achieve the minimum variance bound found in Proposition 2.2, the values of Su
N must be

as close as possible to each other, ideally Su
N must be constant. In this respect the concept

of complete mixability appears as a theoretical device. “Complete mixability” refers to
the dependence structure which makes the sum Su

N constant (Wang and Wang (2011)).
To do so, in practice, we apply the rearrangement algorithm of Embrechts, Puccetti, and
Rüschendorf (2013) on the matrix UN (untrusted part) to be as close as possible to the
complete mixability condition. For completeness, the algorithm is presented in Appendix B
of this paper. Denote by s̃mi the corresponding values of the sums of Su

N after applying the
RA. We then compute the minimum variance as follows

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃mi − s̄)2

⎞
⎠ (23)

16

For the minimum variance, construct convex smallest distribution
for Su

N (ideally constant, “joint mixability”) ⇒ RA on UN

where s̄ is computed as in (22).

We illustrate the upper and lower bounds (21) and (23) for the variance derived above
with the matrix M of observations given in (19). We then use the comonotonic structure

for the untrusted part of the matrix M and compute the vectors of sums Sf
N and Su

N as
defined above in (19). The average sum is s̄ = 5.5. The maximum variance is equal to

1

8

(
3∑

i=1

(si − s̄)2 +

5∑

i=1

(s̃ci − s̄)2

)
≈ 8.75

For the lower bound, we apply the RA on UN and we obtain

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
1 1 3
0 3 2
1 2 2
3 1 1
4 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

5
5
5
5
5

⎤
⎥⎥⎥⎥⎦

(24)

With an average sum s̄ = 5.5, the minimum variance can be calculated as

1

8

(
3∑

i=1

(si − s̄)2 +

5∑

i=1

(s̃mi − s̄)2

)
≈ 2.5

3.4 Bounds on TVaR

Assume that we want the TVaR at probability level p so that for ease of exposition

k := N(1− p) (25)

where k is integer. Similarly to the case of maximizing the variance it follows from Proposi-
tion 2.4, that in order to obtain the maximum TVaR one needs a comonotonic scenario on
UN . Hence, we just need to select the k highest values from Sf

N and Su
N as computed in (17).

Let us label these values by s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order) and we can then easily

compute the maximum TVaR at probability level p. Also the minimum TVaR is obtained
similarly as the minimum variance. First apply the RA on the untrusted part UN to get
the variance on the (new) sum Su

N as small as possible. Then select the k highest values

out of Sf
N and Su

N , say: s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order) and compute the minimum

TVaR.

Let us consider the previous example again. Let us choose p = 5/8, so that k = 3.
The highest k = 3 values are 8, 8 and 10 and the maximum TVaR is then 26/3 (≈ 8.67).
After application of the RA we obtain (24) for Su

N and thus the highest 3 outcomes that we

observe for Su
N and Sf

N are 8, 8 and 5. Hence, the minimum TVaR is 21/3 = 7.

3.5 Bounds on VaR

To compute the maximum VaR, we present an algorithm that can be applied directly on the
matrix M of the observed data, and thus leads to non-parametric bounds on VaR. Recall
that the first �f rows of the matrix M correspond to FN whereas �u denotes the number

of rows of UN (N = �f + �u). In the algorithm, we also make use of Sf
N and Su

N that we
consider as random variables. To compute the VaR at probability level p, we define

k := N(1− p) (26)

17

The minimum variance is
1
8

(∑3
i=1(si − s̄)2 +

∑5
i=1(s̃mi − s̄)2

)
≈ 2.5
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Second Approach

Model Risk Analytical Bounds

(for variance and TVaR)
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Some Notation

• Define pf := P(I = 1) and pu := P(I = 0) where

I := 1(X1,X2,...,Xd )∈F (3)

• Let U ∼ U(0, 1) independent of the event
“(X1,X2, ...,Xd) ∈ F” (so U is independent of I).

• Define (Z1,Z2, ...,Zd) by

Zi = F−1Xi |(X1,X2,...,Xd )∈U (U), i = 1, 2, ..., d (4)

• All Zi (i = 1, 2, ..., d) are increasing in U and thus
(Z1,Z2, ...,Zd) is comonotonic with known distribution.
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Bounds on Variance

Theorem (Bounds on the variance of
∑d

i=1 Xi )

Let (X1,X2, ...,Xd) that satisfies properties (i), (ii) and (iii) and let
(Z1,Z2, ...,Zd) and I as defined before.

var

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

E (Zi )

)
6 var

(
d∑

i=1

Xi

)

6 var

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Zi

)
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Example

I Assume d = 20.

I (i) (X1, ...,X20) is a random vector with N(0,1) marginals.

I (ii) (X1, ...,X20) follows a multivariate standard normal
distribution with correlation parameter (pairwise correlation) ρ
on

F := [qβ, q1−β]d ⊂ Rd

(for some β < 50%) where qγ is the quantile of N(0,1) at
level γ.

I β = 0%: no uncertainty

I β = 50% full uncertainty
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Numerical Results

U = ∅ U = Rd

F = [qβ , q1−β]d β = 0% β = 0.05% β = 0.5% β = 50%
ρ = 0 4.47 (4.4 , 5.65) (3.89 , 10.6) (0 , 20)
ρ = 0.1 7.62 (7.41 , 8.26) (6.23 , 11.7) (0 , 20)

• First column: standard deviation of
∑20

i=1 Xi under the
assumption of multivariate normality (no dependence
uncertainty, i.e., U = ∅).

• Lower and upper bounds of the standard deviation of
∑20

i=1 Xi

are reported as pairs (ρ−F , ρ
+
F ) for various confidence levels β.

• 3,000,000 simulations: all digits reported in the table are
significant.

Carole Bernard Assessing Model Risk in High Dimensions 30



Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions

Observations

I Impact of model risk on the standard deviation can be
substantial even when the joint distribution (X1, ...,Xd) is
almost perfectly known (β close to 0, pu close to 0).

I β = 0.05% and ρ = 0. In this case, pu = 1− 0.99920 ≈ 0.02.
Here, using a multivariate normal assumption might
underestimate the standard deviation by
(5.65-4.47)/4.47=26.4% and overestimate it by
(4.47-4.4)/4.4=1.6%.

I Thus the multivariate normality does not seem to be a
prudent assumption: more likely to underestimate risk than to
overestimate it.

I Adding partial information on dependence (ie when β < 50%)
reduces the unconstrained bounds (β = 50%).

I when β = 0.5% and ρ = 0, pu = 1− 0.9920 ≈ 0.18 and the
unconstrained upper bound for the standard deviation shrinks
by approximately 50% (it decreases from 20 to 10.6).
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Bounds on TVaR or any risk measure satisfying convex order

Theorem (Bounds on the TVaR of
∑d

i=1 Xi )

Assume (X1,X2, ...,Xd) satisfies (i), (ii) and (iii), and let
(Z1,Z2, ...,Zd) and I as defined before.

TVaRp

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

E (Zi )

)
6 TVaRp

(
d∑

i=1

Xi

)

6 TVaRp

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Zi

)

I Same example with the standard multivariate model as
benchmark.

I Conclusions are similar to the variance.
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First & Second Approach

Bounds on Value-at-Risk
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Bounds on Value-at-Risk

Previous approach works for all risk measures that satisfy convex
order... But not for Value-at-Risk(S)

I to maximize VaRp, the idea is to change the comonotonic
dependence of Zi such that the sum is constant beyond the
(comonotonic) VaR level

I to minimize VaRp, the idea is to change the comonotonic
dependence of Zi such that the sum is constant in the left
tail, below the (comonotonic) VaR level (or lowest variance)
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Unconstrained Bounds with Xj ∼ Fj

A = LTVaRq(Sc) 6 VaRq [X1 + X2 + ...+ Xn] 6 B = TVaRq(Sc)

p 
1 q 

B:=TVaRq(Sc) 

A:=LTVaRq(Sc) 
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Bounds on VaR

Theorem (Constrained VaR Bounds for
∑d

i=1 Xi )

Assume (X1,X2, ...,Xd) satisfies properties (i), (ii) and (iii), and let
(Z1,Z2, ...,Zd), U and I as defined before. Define the variables Li

and Hi as

Li = LTVaRU (Zi ) and Hi = TVaRU (Zi )

and let

mp := VaRp

(
I
∑d

i=1 Xi + (1− I)
∑d

i=1 Li

)

Mp := VaRp

(
I
∑d

i=1 Xi + (1− I)
∑d

i=1 Hi

)

Bounds on the Value-at-Risk are mp 6 VaRp

(∑d
i=1 Xi

)
6 Mp.
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Value-at-Risk of a Mixture

Lemma

Consider a sum S = IX + (1− I)Y , where I is a Bernoulli
distributed random variable with parameter pf and where the
components X and Y are independent of I. Define α∗ ∈ [0, 1] by

α∗ := inf

{
α ∈ (0, 1) | ∃β ∈ (0, 1)

{ pf α + (1− pf )β = p
VaRα(X ) > VaRβ(Y )

}

and let β∗ = p−pf α∗
1−pf ∈ [0, 1]. Then, for p ∈ (0, 1) ,

VaRp(S) = max {VaRα∗(X ),VaRβ∗(Y )}

Applying this lemma, one can prove a more convenient expression
to compute the VaR bounds.
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Let us define T := F−1∑
i Xi |(X1,X2,...,Xd )∈F (U).

Theorem (Alternative formulation of the upper bound for VaR)

Assume (X1,X2, ...,Xd) satisfies properties (i), (ii) and (iii), and let
(Z1,Z2, ...,Zd) and I as defined before.

With α1 = max
{

0, p+pf−1
pf

}
and α2 = min

{
1, p

pf

}
,

α∗ := inf

{
α ∈ (α1, α2) | VaRα(T ) > TVaR p−pf α

1−pf

(∑d
i=1 Zi

)}

When p+pf−1
pf

< α∗ <
p
pf

,

Mp = TVaR p−pf α∗
1−pf

(
d∑

i=1

Zi

)

The lower bound mp is obtained by replacing “TVaR” by “LTVaR”.
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Numerical Results, F = [qβ, q1−β]d , ρ = 0.1

U = ∅ U = Rd

β = 0% β = 0.05% β = 0.5% β = 0.5
p=95% 12.5 ( 12.2 , 13.3 ) ( 10.7 , 27.7 ) ( -2.17 , 41.3 )

p=99.95% 25.1 ( 24.2 , 71.1 ) ( 21.5 , 71.1 ) ( -0.035 , 71.1 )

• U = ∅ : No uncertainty (multivariate standard normal model).

• 3, 000, 000 simulations: all digits reported are significant.

I The risk for an underestimation of VaR is increasing in
the probability level used to assess the VaR.

I When very high probability levels are used in the VaR
calculations (p = 99.95%), the constrained bounds are very
close to the unconstrained bounds even when there is almost
no uncertainty on the dependence (β = 0.05%).

I So despite all the added information on dependence, the
bounds are still wide!
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With Pareto risks

Consider d = 20 risks distributed as Pareto with parameter θ = 3.
• Assume we trust the independence conditional on being in F1

F1 =
d⋂

k=1

{qβ 6 Xk 6 q1−β}

where qβ = (1− β)−1/θ − 1.
U = ∅ U = Rd

F1 β = 0% β = 0.05% β = 0.5% β = 0.5
α=95% 16.6 ( 16 , 18.4 ) ( 13.8 , 37.4 ) ( 7.29 , 61.4 )
α=99.95% 43.5 ( 26.5 , 359 ) ( 20.5 , 359 ) ( 9.83 , 359 )
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Incorporating Expert’s Judgements

Consider d = 20 risks distributed as Pareto θ = 3.
• Assume comonotonicity conditional on being in F2

F2 =
d⋃

k=1

{Xk > qp}

Comonotonic estimates of Value-at-Risk
VaR95%(Sc) = 34.29,VaR99.95%(Sc) = 231.98

U = ∅
F2 (Model) p = 99.5% p = 99.9% p = 99.95%

α=95% 16.6 ( 8.35 , 50 ) ( 7.47 , 56.7 ) ( 7.38 , 58.3 )
α=99.95% 43.5 ( 232 , 232 ) ( 232 , 232 ) ( 180 , 232 )
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Comparison

Independence within a rectangle F1 =
⋂d

k=1 {qβ 6 Xk 6 q1−β}
U = ∅ U = Rd

F1 β = 0% β = 0.05% β = 0.5% β = 0.5
α=95% 16.6 ( 16 , 18.4 ) ( 13.8 , 37.4 ) ( 7.29 , 61.4 )
α=99.95% 43.5 ( 26.5 , 359 ) ( 20.5 , 359 ) ( 9.83 , 359 )

Comonotonicity when one of the risks is large F2 =
⋃d

k=1 {Xk > qp}
U = ∅

F2 (Model) p = 99.5% p = 99.9% p = 99.95%
α=95% 16.6 ( 8.35 , 50 ) ( 7.47 , 56.7 ) ( 7.38 , 58.3 )
α=99.95% 43.5 ( 232 , 232 ) ( 232 , 232 ) ( 180 , 232 )
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Algorithm to approximate sharp bounds

• A detailed algorithm to approximate sharp bounds is given in
the paper.

• An application to a portfolio of stocks using market data is
also fully developed.
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Algorithm to approximate sharp bounds

• From the lemma, the VaR of a mixture is obtained as the
maximum of two VaRs.

• At the upper bound, this VaR becomes a TVaR (proposition).

• Compute α∗ and find a dependence in the vector
(Z1,Z2, ...,Zd) such that

VaRβ∗

(
d∑

i=1

Zi

)
= TVaRβ∗

(
d∑

i=1

Zi

)
(5)

where β∗ = p−pf α∗
1−pf

• This is the spirit of the algorithm... where we find the number
of rows to take in the untrusted matrix to apply the RA.
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Conclusions

I Assess model risk with partial information and given marginals
(by Monte Carlo from the fitted distribution or
non-parametrically)

I We provide several ways to choose the trusted area F : d-cube
or contours of a multivariate density fitted to data. Open
question: how to optimally do so?

I N too small but one believes in fitted marginals then improve
the efficiency of the algorithm by re-discretizing using the
fitted marginal f̂i .

I Possible to amplify the tails of the marginals if one does not
trust the marginals, e.g., apply a distortion to amplify the tails
when re-discretizing.

I Additional information on dependence can be incorporated
- variance of the sum (WP with Rüschendorf,Vanduffel)
- higher moments (WP with Denuit, Vanduffel)

Carole Bernard Assessing Model Risk in High Dimensions 49



Introduction Model Risk First Approach Second Approach Value-at-Risk Conclusions

References
I Bernard, C., X. Jiang, and R. Wang (2014): “Risk Aggregation with

Dependence Uncertainty,” Insurance: Mathematics and Economics.

I Bernard, C., Y. Liu, N. MacGillivray, and J. Zhang (2013): “Bounds on
Capital Requirements For Bivariate Risk with Given Marginals and Partial
Information on the Dependence,” Dependence Modelling.
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I Puccetti, G., and L. Rüschendorf (2012): “Computation of sharp bounds
on the distribution of a function of dependent risks,” Journal of
Computational and Applied Mathematics, 236(7), 1833–1840.
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